
The Mental Vision Framework - A Platform
for Teaching, Practicing and Researching

with Computer Graphics and
Virtual Reality

Achille Peternier, Frederic Vexo, and Daniel Thalmann

Virtual Reality Laboratory (VRLab)
Ecole Polytechnique Federale de Lausanne (EPFL)

{achille.peternier,frederic.vexo,daniel.thalmann}@epfl.ch

Abstract. Despite the wide amount of computer graphics frameworks
and solutions available, it is still difficult to find a perfect one fitting
at the same time many constraints, like pedagogical intents and user-
friendliness or speed with high rendering quality and portability. In this
article we describe our contribution to the topic: the Mental Vision plat-
form. Mental Vision is a framework composed of a teaching/research
oriented graphics engine simplifying the users needs in computer visual-
ization and a set of corollary tools specifically designed for practicing and
learning of computer graphics and virtual reality. In this dissertation we
explain our approach design and the contribution brought into a series
of study cases to show how concretely Mental Vision satisfies existing
needs not addressed by other solutions.

Keywords: Computer Graphics, Virtual Reality, Teaching and learning,
CAVE, Mobile devices, Immersion.

1 Introduction

Virtual Reality (VR) is a science that has gained an increasing amount of pop-
ularity and applications during the last years. This increasing interest has also
produced a very wide amount of both software and hardware technologies to
support and improve creation of VR environments. Unfortunately, most of these
innovations are often accessible only by skilled users with a good background
knowledge in VR and Computer Graphics (CG) and through cumbersome and
expensive devices. VR applications require also a significant amount of time to
be developed, because of the complexity introduced by the generation and adap-
tation of 3D objects to fit into a specific realtime software. Finally, VR is a
complex matter by itself and difficult to learn because of the points previously
cited and also because of the heterogeneity of notions (mathematics, networking,
physics, etc.) a user needs to practice with before attempting to implement a
full Virtual Environment (VE).

With the Mental Vision project we aim to tackle theses issues, by creating a
framework for virtual reality intended to be very intuitive, powerful and low-cost.

Z. Pan et al. (Eds.): Transactions on Edutainment I, LNCS 5080, pp. 242–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Mental Vision Framework 243

Mental Vision has been created by mainly targeting to the needs and constraints
of the educational and scientific community, notably reducing the learning curve
and time required to create VEs, limiting the cost of immersive or wearable
frameworks without compromising their quality, and improving understanding
of VR concepts and techniques by directly practicing with them. Moreover, such
a framework has been designed to fit into a wide range of heterogeneous devices,
spacing from low-end student PCs through mobile devices up to Cave Auto-
matic Virtual Environments (CAVEs) [1], across different operative systems and
hardware setups.

Our framework is composed by two main entities: a multiplatform, multide-
vice 3D graphics engine called MVisio (see 3.1) and a set of tools ranging from
pedagogical interactive demonstrators to 3D model exporters and file format
converters (see 3.2).

We introduced our first results about the Mental Vision platform in [2]. In [3] we
separately described the mobile aspects of the platform, while in [4] we published
the first adaptation of our system to work in a CAVE. In this dissertation we in-
sisted in making complex things easier and more affordable for the users, in order
to widen the fruition and application scenarios of VR-oriented technologies. Our
experience with students and researchers has shown that this approach effectively
responds to a need that is not only welcome but also required. In this work we ex-
pose in detail each step of the creation and design of the Mental Vision framework,
comparing our approach against other similar scenarios, and we conclude with a
series of case-of-study of concrete utilizations and applications developed through
the use of our framework in toto, pointing out the contributions brought.

2 Related Work

A wide effort has been invested during the last years into the production of tools
to standardize and simplify access to 3D visual contents. Industry, researchers
and the open-source community released a large amount of platforms to fit the
different needs, covering almost each possible device and operating system.

2.1 Open and Closed Source 3D Graphics Engines

Ogre1, Crystal Space2 and Irrlicht3 are among the most used and complete open-
source graphics engines available so far that could be used as foundation for vir-
tual reality applications. Similar to MVisio, they feature high quality rendering
but suffer from being available only on PC, without support for mobile devices or
CAVEs. There are also many differences between the application programming
interface (API): such open-source engines are mainly oriented to performance
and game development, while MVisio aims at simplicity and compactness.

Industry graphics engine are state-of-the-art frameworks featuring the most
recent effects available and extremely optimized for speed. Among these systems
1 http://www.ogre3d.org
2 http://www.crystalspace3d.org
3 http://irrlicht.sourceforge.net

http://www.ogre3d.org
http://www.crystalspace3d.org
http://irrlicht.sourceforge.net

244 A. Peternier, F. Vexo, and D. Thalmann

there are Cryengine2 from Crytek4, Unreal Engine 3 from Unreal Technology5,
Half Life 2 from Valve Software6 or Doom 3 from ID Software7. All these closed-
source software are extremely powerful engines but limited by their licence costs,
the lack of a full access to the source code for adaptations and modifications re-
quired to move the system to other platforms/devices not originally aimed by
their developers (like CAVEs or Smartphones) and are very difficult to program
for not specialists. Such engines are also very complicated and poorly docu-
mented, requiring a good amount of time to get used with as pointed out by Kot
et al. in [5]. Kot et al. also complained about the limitations and bugs of some of
the GUI available in these engines: with MVisio we implemented our own inte-
grated GUI, offering the same basic user interface functionalities independently
from the system/device the engine is running on.

Virtools8 is a professional framework conceptually very similar to our one,
offering support for a wide range of devices and platforms and includes a visual
editor for quickly developing applications. With MVisio we preferred to directly
simplify programming without recurring to an ad hoc visual editing tool and
by targeting mobile devices, not supported by their platform. Virtools is also
more hardware demanding than MVisio, which has been programmed to work
on older student machines too.

Recently Microsoft released XNA 29 which is a free development framework
oriented to game developers. XNA aims at reducing the complexity of this task
by offering all the basic tools and source code to immediately start working
on the application itself instead on corollary tasks. XNA is unfortunately very
oriented to videogames and limited to Microsoft systems (Windows or XBox
consoles) and lacks support for VR and mobile devices. XNA is also accessible
only through C# and the .NET framework, a limitation for our students and
researchers using also Linux or MacOS systems.

Java3D is acquiring more and more interest thanks to the support for hard-
ware acceleration and availability of the J2ME platform on several recent de-
vices. We used C++ and Windows Mobile instead because at the beginning of
our project hardware acceleration on mobile devices was not as robust and as
accessible as today. This evolution is summarized by Soh et al. in [6].

2.2 Educational Frameworks

Towle et al. first identified in 1978 with GAIN [7] the interest in offering inter-
active applications to use at home as an option to practical work sessions, done
in cooperation with other students, and as a more intuitive way to learn than
with just a manual or a workbook. We extended this idea with our pedagogical
demonstrators, by integrating them directly with the class documentation and
4 http://www.crytek.com
5 http://www.unrealtechnology.com
6 http://www.valvesoftware.com
7 http://www.idsoftware.com
8 http://www.virtools.com
9 http://www.xna.com

http://www.crytek.com
http://www.unrealtechnology.com
http://www.valvesoftware.com
http://www.idsoftware.com
http://www.virtools.com
http://www.xna.com

The Mental Vision Framework 245

by making them mobile for at-desk support during practical sessions. The bene-
fits offered by multimedia contents for CG teaching purposes are also shown by
Song and al. in [8]: interactive modules reduce learning time and improve use
and diffusion of contents over the web, potentially targeting more people without
additional costs. Meeker used a learning by practice approach in [9] through the
use of the free software Anim8or10 to let students practice about basic notions
of 3D modeling during the course. Our system is more oriented to the use of
models already created by artists, for example by exporting them through our
plugin from 3D Studio Max directly into the graphics engine.

Many CG and VR topics can also be taught by recurring to games: for example
Hill and al. used in [10] puzzles and games to reinforce the learning objectives. Sim-
ilarly, Becker in [11] used video-games as motivator for programming applications
on Computer Science classes. We already had a positive feedback by offering gam-
ing projects during the course of advanced Virtual Reality in [12]: with MVisio,
we want to provide to the learners a tool allowing them to benefit more from this
option, by giving them all the instruments they need in an easy and comfortable
way. Korte et al. also reported that creating videogames may also be an innovative
method for teaching modeling skills in theoretical computer science [13].

About the creation of pedagogical oriented graphic engines, when 3D graph-
ics accelerator cards for micro computer weren’t available, Clevenger and al.
developed a graphics engine to supply students with a learning platform (called
TUGS) in [14]. Their goal was to offer a support to students to immediately
render some images and to allow them to substitute parts of code of the TUGS
engine with their own later in the semester, in order to have a full working
platform since the beginning of the class. Their approach was particulary useful
before the large introduction on personal computers of graphics APIs based on
3D hardware acceleration like OpenGL and DirectX, which substituted the ex-
pensive need to develop a custom rasterizer. Coleman et al. created Gedi [15],
an open-source game engine for teaching videogame design and programming in
C++. Based on the same principle to create a pedagogical engine, with MVisio,
we want to provide a more generic software that can be used not only for games
but also for Computer Graphics and Virtual Reality applications, by adding for
example support for VR devices like head-mounted displays or CAVE systems.
Tori et al. used Java 3D, small videogames, and customized software in [16] to
introduce CG to students. They also relied on a more complex Java 3D graph-
ics engine (called enJine) for the development of semester projects. The main
advantage of their approach is the operativing system independency offered by
Java, very useful when addressing a wide user audience like a student class, using
different PCs and operative systems. With our system we more aim at Virtual
Reality and supporting devices other than standard personal computers.

In [17], Wilkens pointed out the advantages and disadvantages of using more
than one API to access graphics functionalities during a computer graphics
course, resulting in a excessive burdening of both students and teachers de-
manding more extra-time than the time normally expected for the class.

10 http://www.anim8or.com

http://www.anim8or.com

246 A. Peternier, F. Vexo, and D. Thalmann

In the next sessions we describe first the goals and design of our framework
and we analyze then different concrete uses of our platform on different projects
and classes, to evaluate the contribution brought by our approach.

3 Mental Vision Platform

Mental Vision is a computer graphics and virtual reality framework oriented
towards education and scientific research needs. We decided to create our own
system after comparing the different already existing solutions without finding
a perfect one fitting at the same time to all our constraints. We can enumerate
our requests in ten points:

1. Multiplatform (across different operative systems) and multidevice (running
on handheld devices, PCs and CAVE environments).

2. Very compact in sizes and resources, reducing external dependencies, im-
proving compatibility between recent and older machines and project de-
ployability.

3. Extremely simple to use, reducing the learning curve and the lines of code
to write to achieve results and getting rid of all the corollary aspects CG
usually requires.

4. Featuring an embedded GUI system with basic windowing, text manage-
ment, buttons, etc. without requiring external additional dependencies.

5. Robust, for uses during public demonstrations, classes and conferences.
6. Not dependant from costly software or hardware, being aimed to education

and science, often very budget-limited.
7. Fast and modern, featuring a good rendering speed, quality, and satisfying

at the same time teaching and research needs in our field.
8. Virtual-Reality aware, easily supporting VR specific devices like Head-

Mounted displays or haptic devices.
9. Including the necessary tools to import models, textures, videos and anima-

tions from other programs.
10. Including tutorials and demonstrators about the framework itself, CG and

VR concepts as well.

With our framework we address and propose a solution to these points. Our
work is divided into two main entities: the 3D graphics engine itself (called
MVisio) and the pedagogical tools (like modules and tutorials) that rely on the
top of MVisio. We describe them both in the next subsections.

3.1 MVisio 3D Graphics Engine

The MVisio 3D graphics engine is a generic, multi-platform and multi-device
library giving access to modern computer graphics via a very simple API (see
figure 1).

We insisted into simplifying things usually complex like advanced shading
techniques or CAVE/mobile devices porting by making them almost invisible

The Mental Vision Framework 247

Fig. 1. High-quality rendering with dynamic soft-shadowing, depth of field and bloom
lightning

for the user. We extended this idea of simplicity to each aspect of the engine
design, aiming at the same time to an apprentice user and a more experienced
one. New users can have immediate results with just few lines of code: initializing
the engine, loading a scene with lights, cameras, textures and many 3D models
and displaying it on the screen takes as low as five lines of code. Advanced users
can later accessing and modifying dynamically each element, by looking more
deeply into the engine design or just use the highest-level instructions when they
don’t need unnecessary full control on specific details. One of the key points of
MVisio making it very different from the game-oriented graphics products is the
automatization of almost each feature through high-level methods taking care
of everything but still offering experienced users to by-pass high-level calls to
fine tune their needs. We can consider MVisio as a dual-head entity, exposing at
the same time high and low level interfaces to the intrinsic features that can be
accessed at the same time, according to the context and user needs. This is not
only an advantage for new students who can have immediate results but also to
experienced users to quickly build up a 3D scenario to use for their goals.

A MVisio-based application source-code for Windows is identical to its relative
under Linux. Porting the same application from PC to mobile devices is just a mat-
ter of linking against different libraries and modifying a constant, switching from
PC to CAVE just needs to specify the IP addresses of the CAVE-client comput-
ers. The following piece of C++ source code shows a very basic MVisio application
supporting loading and rendering of a 3D scene on PDA, PC and CAVE:

248 A. Peternier, F. Vexo, and D. Thalmann

//#define MV_PDA // <-- uncomment this for a PDA build
//#define MV_CAVE // <-- uncomment this for a CAVE build
#include <mvisio.h>

int main(int argc, int argv[])
{

// CAVE build require to specify client PC IP addresses:
#ifdef MV_CAVE

MVCLIENT *front = new MVCLIENT();
front->setIP("192.168.0.1");
front->setID(MV_FRONT);

MVCLIENT *right = new MVCLIENT();
right->setIP("192.168.0.2");
right->setID(MV_RIGHT);

// Etc...
#endif

// Initialize the graphics engine:
MVISIO::init();

// Load full scene (textures, lights, models, etc.):
MVNODE *scene = MVISIO::load("bar.mve");

// If in the CAVE, update user head coordinates
// for correct projection computation:

#ifdef MV_CAVE
MVCLIENT::putUser(1.175f, 1.6f, 1.25f);

#endif

// Display the scene:
MVISIO::clear();
MVISIO::begin3D();

scene->pass();
MVISIO::end3D();
MVISIO::swap();

// Free everything:
MVISIO::free();

}

MVisio also natively satisfies most of the recent computer graphics standards,
featuring direct support for complex model loading, advanced shading techniques
and post-processing effects, skinning and animations, terrain rendering, inte-
grated GUI systems, video2texture, etc. The user can just decide to activate

The Mental Vision Framework 249

or load one of these items and let MVisio automatically manage everything, or
specifying each parameters through a very wide set of parametrization options
featured in each class.

Another advantage of MVisio is the coherence of the design. Each element,
either 2D (for the graphics user interface) or 3D, derives from the same base
structure and exposes the same functionalities, thus reducing learning time for
understanding how each MVisio object works and reducing code sizes. Advanced
users can create and add new objects to MVisio by simply deriving from this
base class, as shown in the following source code example. Users just need to im-
plement the render() method that will be called by MVisio to display the object,
when other functionalities like scene-graph compatibility and instancing will be
natively managed by MVisio, reducing user tasks to perform when implementing
new entities:

typedef class MY_SKYBOX : public MVNODE
{
public:

MY_SKYBOX() { type = MV_NODE_CUSTOM; }

bool render(void *data = 0)
{

MVELEMENT *element = (MVELEMENT *) data;

// Scenegraph node base position:
glLoadMatrixf((float *) element->getMatrix());

// Setting OpenGL flags for this object:
MVOPENGL::blendingOff();
MVMATERIAL::reset();
MVSHADER::disable();
MVLIGHT::lightingOff();
// Etc...

// Perform native OpenGL calls:
glColor4f(1.0, 1.0, 1.0,1.0f);
glTranslatef(position.x,position.y,position.z);
glScalef(0.5f, 0.5f, 0.5f);

// Display the skybox with OGL triangles
glBegin(GL_TRIANGLES);
glVertex3f(20.0f, 20.0f, 20.0f);
// Etc...

return true;
}

} MY_SKYBOX;

250 A. Peternier, F. Vexo, and D. Thalmann

3.2 Pedagogical and Corollary Tools

The MVisio graphics engine is the core product of our framework, but not the
only one. When MVisio is aimed mainly to concrete practice and developing of
applications, we also created a set of corollary tools oriented to aid a more ex
cathedra teaching approach. The Mental Vision platform is then completed by
three additional tools: a set of pedagogical modules, a series of tutorials, and
other utilities to reduce and simplify development times with MVisio.

Pedagogical modules are compact and interactive demonstrators created to
practically illustrate a specific algorithm, method or technique introduced dur-
ing the class. Modules are concretely executable files created on the top of the
MVisio engine (thus inheriting the same robustness and smoothness) working
as small stand-alone applications that both students and teachers can download
and use as learning support. Moreover, modules can be used on handheld devices
that assistants may use during practical sessions to directly illustrate additional
explains on the desk. Modules are distributed along with their source code that
can be used by learners as an example of uses of the MVisio graphics engine
itself.

Tutorials refer to the use of the graphics engine. They are a suite of HTML
pages with downloadable examples (conceptually similar to the very popular
tutorial sites like Nehe11 or Gametutorials12) illustrating step by step how to
start working with MVisio. Tutorials are used for introductory notions and first
practice with MVisio, while modules aim to cover more specific aspects by letting
users reading their source code to find out how an algorithm or technique has
been implemented.

Besides the graphics engine, modules and tutorials, the Mental Vision frame-
work comes with a series of extra tools like Autodesk13 3D Studio Max plugins
or FBX converters to easily import 3D contents from third-part products into
MVisio. Extra tools include also optional classes for using a joypad to control
3D cameras or some basic artworks to improve the aspect of the embedded GUI.

4 Implementation

This section gives an architectural and technical overview about the main com-
ponents of the Mental Vision platform, namely the MVisio 3D graphics engine
and pedagogical demonstrators.

4.1 System Architecture

The Mental Vision framework is a multi-platform and multi-device system fea-
turing a 3D graphics engine with an unique and same interface independently
from the operating system or device we want to use, and cross-platform and
11 http://nehe.gamedev.net
12 http://www.gametutorials.com
13 http://www.autodesk.com

http://nehe.gamedev.net
http://www.gametutorials.com
http://www.autodesk.com

The Mental Vision Framework 251

Fig. 2. MVisio multi-device rendering pipeline overview

cross-device pedagogical demonstrators and tools. Users adopting MVisio as
graphics engine just need to link their code with the appropriate library created
for each OS/device and let our software manage the rest. Students practicing
or reviewing class notes through our modules just need to pick the appropriate
version supporting their platform and run it.

MVisio automatically tunes its internal pipeline through different code-paths,
according to the context. For example a typical PC application (x86 architec-
ture on a Linux or Windows based system) directly uses the graphics hardware
available to perform the best rendering approach. CAVE systems require a more
complex approach: a local instance of MVisio (that runs on the same machine the
user is developing on) becomes the server of the CAVE system. This server ver-
sion of MVisio communicates with the several CAVE client machines, each one
running a daemon service waiting requests from a server. Locally, each CAVE
client (one per wall) starts a MVisio version for PC and reproduces all the high-
level methods invoked server-side by the user. We can consider MVisio for CAVE
as a remote playback of methods called on the server PC (see figure 2).

MVisio for mobile devices is very similar to the MVisio for PC version, but
is optimized for fixed-maths ARM processors and uses only the basic graphics
functionalities of the engine, that is the only ones that may run on the very
limited resources available on handheld devices. It is important to mention that
the only differences for the end user between running his/her application on a
PC, CAVE or mobile device concern only the version of MVisio to link with: no
other modifications are required.

4.2 Technical Details

The Mental Vision software is entirely written in C++. The graphics engine is
distributed as a stand-alone dynamic-link library (DLL) to link against using its

252 A. Peternier, F. Vexo, and D. Thalmann

.h and .lib files. The entire API is class-oriented and uses an internal resource
manager releasing the users from the need of freeing allocated entities.

MVisio uses a slightly customized SDL version (Simple DirectMedia
Library14) for basic platform independent output window creation, event and
threading management. Low-level graphics rendering is performed via OpenGL15

on personal computers/CAVEs and through OpenGL|ES16 on mobile devices.
On PCs and CAVEs, MVisio supports OpenGL version 1.1 up to 1.5, by au-

tomatically compiling and using different code-paths according to the hardware
quality the engine is running on. For example on a full OpenGL 1.5 compliant
PC hardware skinning, soft-shadowing, per-pixel lightning and different post-
processing effects (like depth of field and bloom-lightning) are activated.

On mobile devices (based on Windows CE 4 or better) MVisio comes with two
different versions: a generic one, using a software implementation of OpenGL|ES
(made by Hybrid) and a hardware accelerated version, running on PowerVR
MBX-lite17 graphics boards. In both cases we used OpenGL|ES 1.0 Common
Lite profiles.

MVisio for CAVEs uses TCP/IP communications for data transmission be-
tween server and clients (refer to [4] for more details).

5 Cases of Study

This section presents several cases of study related to concrete uses of our plat-
form, ranging from educational/practicing to scientific applications. Each case
will be briefly summarized and followed by a discussion about the advantages
brought by the adoption of the Mental Vision framework.

5.1 Mental Vision for Education During the Lessons

Teaching topics like splines, clipping planes or vertex skinning may be a difficult
task because of the abstract notions required by the learning process. Teachers
often recur to schematics or videos to support their explains with visual feedback.
Despite the clearness contribution yielded by images to the learning process,
practice and interactivity are not covered by these supports.

Pedagogic Modules. To improve these aspects of teaching, we developed a
series of interactive modules to be used during lessons to concretely and dy-
namically show how an algorithm, technique or concept work. Teachers have a
more robust and dynamic support to visualize on a large screen notions they’re
explaining, other than a blackboard or a video. Modules allow both teachers
and students to directly interact with the topic discussed and have a direct re-
lationship between the modifications they apply and the results they get (What

14 http://www.libsdl.org
15 http://www.opengl.org
16 http://www.khronos.org/opengles
17 http://www.imgtec.com

http://www.libsdl.org
http://www.opengl.org
http://www.khronos.org/opengles
http://www.imgtec.com

The Mental Vision Framework 253

Fig. 3. Animation module: students can create, manipulate and export short anima-
tions for later usage within the MVisio 3D engine

You See Is What You Get approach). Moreover, modules can be downloaded
and used at home for reviewing the class content and their source-code read for
potential implementations during practical work sessions: being both modules
and practical sessions based on the top of the MVisio engine, the course get a
coherent guiding thread between the theoretical aspects and the practical ones,
reducing the patchwork-like approach many courses suffer from using some tools
during the lessons, other ones in the class-notes and different ones again during
workshops and practice. Modules show also a great utility in e-learning con-
texts, offering students remotely following the class to still be able to practice
and repeat the experiences taught.

For example the module about skinned animation allows students to create
short animations by setting different key-postures on a time-table affecting a
virtual character (see figure 3). This way, teachers don’t need to rely on cumber-
some and expensive software like 3D Studio Max or Maya to demonstrate and
practice with this topic. Furthermore, animations created through this compact
module can be saved and exported on a file for later usage in MVisio for prac-
tical work or class projects, connecting theoretical course lessons with practical
sessions.

Other modules also feature this editing options, like the particle engine and
terrain engine related ones: these modules can be used as teaching support dur-
ing the lesson time and as particle or terrain editors during the practical ses-
sions. Users can export to a file the particle system or terrain created through the

254 A. Peternier, F. Vexo, and D. Thalmann

Fig. 4. Our CAVE used during young student visits to disseminate scientific
technologies

module and load them directly into MVisio, thus reducing dependencies from
external software and improving coherence with the theoretic aspects.

Modules are even more connected between ex cathedra lessons and practical
sessions by their mobile versions, running on handheld devices. During practical
sessions, assistants can freely sit at the student desks with their handheld devices
and support their additional explains by reusing the mobile version of a module
as a portative blackboard.

CAVE and Dissemination. We integrated a visit to our laboratory to the
course plan in order to let students seeing and experiencing with our VR equip-
ments. Particular attention has been used for the CAVE part of this visit, by
using it to furthermore fix concepts like spatial level of detail and terrain render-
ing techniques. Students can enter the CAVE and experience these techniques
by seeing them concretely used around them, with stereographic and immersive
rendering. CAVE systems have the advantage of being very curious and rare de-
vices that will attract students attention and give them a long term remember
of the experience.

We also use our CAVE as attraction during public demonstrations for external
visitors, like secondary or high school students, for disseminating technologies
we use in our field through user-friendly and interesting demos (see figure 4).

Thanks to the automatic multi-device support of MVisio and the easiness of
its calibration support for the CAVE rendering, it is straightforward and very
time effective to run, maintain or improve such demos: in less than 5 minutes
the entire system can be started, calibrated and ready for visitors.

The Mental Vision Framework 255

Fig. 5. A curling simulation game made by students with animations, dynamic light-
ning and GUI

5.2 Mental Vision for Practical Works

Theoretical classes are coupled with practical sessions where students may con-
cretely apply the knowledge introduced during the different lessons. We already
observed in [12] that proposing the creation of little game-like applications, in-
cluding most of the VR and CG related aspects taught during the class, was an
interesting motivating factor. We improved this aspect by introducing the MVi-
sio 3D graphics engine as the standard tool for semester projects and workshops.

The Curling. Students of a virtual reality course were asked for developing a
simulation of a curling match (see figure 5). With such a project, we aimed to
make students practice with several aspects of virtual reality by integrating in
the same work realtime graphics, basic physics, stereographic rendering, force
feedback (through a vibrating joypad) and some game mechanics to implement
curling rules. The practical sessions lasted one semester in reason of one hour
per week and projects were done by groups of two students. We gave for the
first time MVisio to students, a basic DirectInput library, 3D models and some
guidelines for the physics and game related aspects.

At the end of the semester we evaluated about twenty projects. Compared to
previously years projects, made by using other tools or letting students to freely
choose which software adopt, a clear improvement in both the quality and com-
pleteness of the work were noticeable. Despite the low amount of time accorded
weekly on this task, they managed to take care of all the aspects and improved
their global vision about the creation of a VE. The immediate results available

256 A. Peternier, F. Vexo, and D. Thalmann

Fig. 6. Virtualized CAVE to locally preview on a single PC an immersive application
developed with MVisio

through the lightweight MVisio interface also kept their motivation high, reduc-
ing the gap from the documentation reading to the first results considerably: for
example at the end of the first session students managed to display and move the
different scene elements on the screen. Thanks to the MVisio API compactness,
only few lines of code are required to perform such tasks, thus reducing consider-
ably the amount of information users have to understand in order to be operative.

Semester Projects. We have been offering bachelor/master level projects
about specific VR/CG topics for students who decide to pass their semester
projects in our laboratory. Such project topics may be very heterogeneous, like
implementing state-of-the-art techniques in our software or helping assistants in
their researches. For example we offered many projects related to mobile devices
or our CAVE, like a 3D GPS-like handheld remote controller to perform tele-
operations on a real blimp or implementing a full immersive game in the CAVE.
Unfortunately, we just have a single CAVE and very few mobile devices that
may be shared among all the persons needing them. Thanks to the multi-device
portability of MVisio, we can get rid of this problem by letting users work on
the PC version and just run their projects later on the hardware they need. For
CAVE users requiring a wider overview we also developed a Virtual CAVE (see
figure 6) featuring a single PC preview about how their application will look like
once ran on the real device.

5.3 Mental Vision for Research and Prove of Concept

We exposed so far minor uses of the MVisio engine on semester projects, course
practical works or similar: in the following examples we describe deeper and
more long-term applications of MVisio for thesis research projects.

MHaptic. MVisio has been integrated into a haptic engine (called MHaptic
[18]) to manage the visual output of the system, featuring the Immersion18

Haptic Workstation and a user-worn HMD (see figure 7).

18 http://www.immersion.com

http://www.immersion.com

The Mental Vision Framework 257

Fig. 7. MHaptic haptic engine using MVisio for visual rendering

MHaptic relies on an external editor, MHaptic Scene Creator, which is a 3D
Studio Max-like software to add haptic proprieties to a 3D scene (like weight,
collision detection, physics, etc.). This software has been developed by largely
using the GUI system and advanced functionalities of MVisio (see figure 8).

The MHaptic project shows how far MVisio can be used not only to simplify
teachers and students needs but also to develop very complex and advanced
applications.

Human Animation. MVisio native support for large screens, CAVEs and
head-mounted displays has been widely used in [19] to test and validate inverse
kinematics reaching techniques authors introduced. Thanks to the MVisio porta-
bility, they could repeat the experience by giving visual feedback to users on PC,
through an HMD or in front of large screens with no need of major modifications
to the applications they developed (see figure 9).

6 Conclusions and Future Work

This publication describes motivations, approaches and results we obtained by
creating our graphics framework called Mental Vision. We used it for teach-
ing, practice and research in the field of computer graphics and virtual reality.
We cite many different cases of study where the MVisio graphics engine and
pedagogical tools have been successfully used, showing advantages and benefits.
The MVisio 3D graphics engine simplifies the creation of virtual environments

258 A. Peternier, F. Vexo, and D. Thalmann

Fig. 8. MHaptic editor for adding haptic properties to virtual objects, entirely devel-
oped using MVisio and its GUI support

Fig. 9. User testing the different reaching techniques in the CAVE

The Mental Vision Framework 259

and the adoption of less programmer-friendly platforms like handheld devices or
CAVE systems. MVisio satisfies at the same time a very wide range of needs
and perfectly fits into a series of different cases that usually would require more
than a single software and approaches. Thanks to MVisio, our entire laboratory
is working on the top of the same system, from researchers to students, im-
proving inter-personal cooperations, reducing learning times and facilitating the
maintaining of software written by other persons or members who left the crew.

We are now planning to make the CAVE and mobile device support more
generic. CAVE support should become useable on CAVE installations other than
ours, with an arbitrary shape and number of walls, while the hardware accel-
erated support for handheld devices should be extended to more recent mobile
phones and personal digital assistants, supporting OpenGL|ES 1.1 or higher.

MVisio version 1.6.4 and pedagogical modules are freely downloadable for
teaching and researching purposes on our website19.

Acknowledgments. Mental Vision has been sponsored by the EPFL Funding
Program for Teaching and Learning (FIFO). MVisio has been recently used and
extended in the framework of the INTERMEDIA Network of Excellence.

References

1. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The cave:
audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–
72 (1992)

2. Peternier, A., Thalmann, D., Vexo, F.: Mental vision: a computer graphics teaching
platform. In: Pan, Z., Aylett, R.S., Diener, H., Jin, X., Göbel, S., Li, L. (eds.)
Edutainment 2006. LNCS, vol. 3942, pp. 223–232. Springer, Heidelberg (2006)

3. Peternier, A., Vexo, F., Thalmann, D.: Wearable Mixed Reality System In Less
Than 1 Pound. In: Proceedings of the 12th Eurographics Symposium on Virtual
Environment (2006)

4. Peternier, A., Cardin, S., Vexo, F., Thalmann, D.: Practical Design and Imple-
mentation of a CAVE Environment. In: International Conference on Computer
Graphics, Theory and Applications GRAPP, pp. 129–136 (2007)

5. Kot, B., Wuensche, B., Grundy, J., Hosking, J.: Information visualisation utilis-
ing 3d computer game engines case study: a source code comprehension tool. In:
CHINZ 2005: Proceedings of the 6th ACM SIGCHI New Zealand chapter’s inter-
national conference on Computer-human interaction, pp. 53–60. ACM, New York
(2005)

6. Soh, J.O.B., Tan, B.C.Y.: Mobile gaming. Commun. ACM 51(3), 35–39 (2008)
7. Towle, T., DeFanti, T.: Gain: An interactive program for teaching interactive com-

puter graphics programming. In: SIGGRAPH 1978: Proceedings of the 5th annual
conference on Computer graphics and interactive techniques, pp. 54–59. ACM, New
York (1978)

8. Song, W.C., Ou, S.C., Shiau, S.R.: Integrated computer graphics learning system
in virtual environment: case study of bezier, b-spline and nurbs algorithms. In:
Information Visualization, 2000. Proceedings. IEEE International Conference, pp.
33–38 (2000)

19 http://vrlab.epfl.ch/∼apeternier

http://vrlab.epfl.ch/~apeternier

260 A. Peternier, F. Vexo, and D. Thalmann

9. Meeker, P.H.: Introducing 3d modeling and animation into the course curriculum.
J. Comput. Small Coll. 19(3), 199–206 (2004)

10. Hill, J.M.D., Ray, C.K., Blair, J.R.S., Curtis, A., Carver, J.: Puzzles and games:
addressing different learning styles in teaching operating systems concepts. SIGCSE
Bull 35(1), 182–186 (2003)

11. Becker, K.: Teaching with games: the minesweeper and asteroids experience. J.
Comput. Small Coll. 17(2), 23–33 (2001)

12. Gutierrez, M., Thalmann, D., Vexo, F.: Creating cyberworlds: experiences in com-
puter science education. In: International Conference on Cyberworlds, 2004, pp.
401–408. Virtual Reality Lab., Swiss Fed. Inst. of Technol, Lausanne, Switzerland
(2004)

13. Korte, L., Anderson, S., Pain, H., Good, J.: Learning by game-building: a novel
approach to theoretical computer science education. In: ITiCSE 2007: Proceedings
of the 12th annual SIGCSE conference on Innovation and technology in computer
science education, pp. 53–57. ACM, New York (2007)

14. Clevenger, J., Chaddock, R., Bendig, R.: Tugs: a tool for teaching computer graph-
ics. SIGGRAPH Comput. Graph. 25(3), 158–164 (1991)

15. Coleman, R., Roebke, S., Grayson, L.: Gedi: a game engine for teaching videogame
design and programming. J. Comput. Small Coll. 21(2), 72–82 (2005)

16. Tori, R., Jo ao Luiz Bernardes, J., Nakamura, R.: Teaching introductory computer
graphics using java 3d, games and customized software: a brazilian experience. In:
SIGGRAPH 2006: ACM SIGGRAPH 2006 Educators program, p. 12. ACM, New
York (2006)

17. Wilkens, L.: A multi-api course in computer graphics. In: CCSC 2001: Proceedings
of the sixth annual CCSC northeastern conference on The journal of computing in
small colleges, USA, Consortium for Computing Sciences in Colleges (2001)

18. Ott, R., De Perrot, V., Thalmann, D., Vexo, F.: MHAPTIC: a Haptic Manipulation
Library for Generic Virtual Environments. In: Haptex 2007(2007)

19. Peinado, M., Meziat, D., Maupu, D., Raunhardt, D., Thalmann, D., Boulic, R.:
Accurate on-line avatar control with collision anticipation. In: VRST 2007: Pro-
ceedings of the 2007 ACM symposium on Virtual reality software and technology,
pp. 89–97. ACM, New York (2007)

	The Mental Vision Framework - A Platform for Teaching, Practicing and Researching with Computer Graphics and Virtual Reality
	Introduction
	Related Work
	Open and Closed Source 3D Graphics Engines
	Educational Frameworks

	Mental Vision Platform
	MVisio 3D Graphics Engine
	Pedagogical and Corollary Tools

	Implementation
	System Architecture
	Technical Details

	Cases of Study
	Mental Vision for Education During the Lessons
	Mental Vision for Practical Works
	Mental Vision for Research and Prove of Concept

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

