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Abstract—While modern CPUs offer an increasing number
of cores with shared caches, prevailing execution engines
for business processes, workflows, or Web service composi-
tions have not been optimized for properly exploiting the
abundant processing resources of such CPUs. One factor
limiting performance is the inefficient thread scheduling by
the operating system, which can result in suboptimal use
of shared caches. In this paper we study performance of
the JOpera business process execution engine on a recent
multicore machine. By analyzing the engine’s architecture
and by binding threads that are likely to access shared data
to cores with a common cache, we achieve speedups up to
13% for a variety of workloads, without modifying the en-
gine’s architecture and implementation, apart from binding
threads to CPUs. As the engine is implemented in Java, we

provide a new Java library to manage thread bindings and
hardware performance counters. We also leverage hardware
performance counters to explain the observed speedup in our
performance analysis.
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performance optimization; thread–CPU bindings; hardware
performance counters

I. INTRODUCTION

Business process execution engines have become cru-

cial components within modern service-oriented architec-

tures [1], [2]. The purpose of such engines is to orchestrate

a set of distributed services by executing a business

process describing how Web services should interact to

achieve a certain goal [3]. Business processes are typically

themselves delivered as services to clients [4], requiring

process execution engines to be able to scale to handle a

potentially high and unpredictable number of concurrent

client requests [5].

In this paper, we target JOpera [6], a Java-based busi-

ness process execution engine featuring a visual compo-

sition environment for the Eclipse platform. The JOpera

engine can be deployed as a standalone server on dedicated

machines. JOpera executes service compositions defined

in a visual modeling language which are then compiled to

Java code for efficient execution. The kernel of its engine

features a scalable architecture which was originally de-

signed to run on parallel execution environments such as

on computer clusters [7].

Since it has become difficult to further increase the

clock rate of processors, nowadays chip manufacturers

are delivering more processing power by increasing the

number of cores available in CPUs [8]. Recent multipro-

cessors combine several cores with a hierarchy of caches

on a single chip. Typically, each core has its own small

L1 and L2 caches, while several or all cores on a chip

share a larger L3 cache. Examples include Intel Nehalem

processors and AMD Opteron processors. Caches shared

by cores on CPUs allow for faster communication be-

tween threads that are executing on different cores of

the CPU, avoiding passing the data through inter–CPU

connections or through main memory. Therefore, threads

that frequently access the same shared data can benefit

from executing on cores of the same CPU, since the

accessed data may be kept in the shared cache.

While any multi-threaded application using thread

pools, such as JOpera, may deliver better performance

when running on a modern multicore machine, the abun-

dant hardware resources of such machines are often under-

utilized unless the application has been tuned to exploit

the specific hardware architecture. In addition, when two

communicating threads are executing on cores that do not

have a shared cache, extra overhead is incurred [9].

In order to make better use of modern multicores,

in this paper we explore how to exploit thread–CPU

bindings in the context of the JOpera engine. Modern

operating systems offer the ability to constrain the set of

cores on which a given thread may run, and thus bind

any thread to any core. This lightweight technique is a

promising approach, as it does not require to modify the

existing architecture of the JOpera engine. Instead, we just

extended the engine’s kernel to control particular thread–

CPU bindings. Our approach is easily applicable to other

service-oriented middleware built using thread pools, as it

does not require any redesign or major refactoring of the

engine’s code.

As JOpera is implemented in Java, we need an API

to specify thread–CPU bindings. Since the standard Java

class library does not offer any API to this end, we

developed a new library, called OverHPC, which supports

this feature. In addition, OverHPC enables to perform pre-

cise measurements with hardware performance counters

(HPCs) directly from Java.

We explore different policies for thread–CPU bindings

in JOpera and investigate performance for a variety of

different workloads. On a multicore machine with modern

micro-architecture, carefully chosen thread–CPU bindings

yield a performance improvement up to 13%.

The scientific contributions of this paper are two-fold.

First, we provide a new library to manage thread–CPU

bindings in Java-based service-oriented middleware and

show how it helps tune an existing business process



execution engine for modern multicores. Second, we

present detailed evaluation results that demonstrate the

possible performance gains with appropriately set thread–

CPU bindings. We also show that an inappropriate use

of this mechanism deteriorates performance. Our results

are confirmed by collecting measurements from specific

hardware performance counters, which help to explain the

performance improvement.

This paper is structured as follows: Section II presents

JOpera, which we use as a case study in this paper.

Section III discusses our library for accessing HPCs and

setting thread–CPU bindings. Sections IV and V present

the results of our performance investigations. Section VI

discusses related work, and Section VII concludes.

II. THE JOPERA BUSINESS PROCESS EXECUTION

ENGINE

In this section we present the architecture of the latest

version (2.5.0) of the JOpera1 engine. JOpera’s service

compositions are modeled using processes describing in

which order a set of tasks should be executed, and

specifying the data flow exchanges between tasks. This

means that JOpera tasks may involve local computations

(e.g., defined using Java snippets or Java method calls) as

well as remote service invocations (e.g., through RESTful

HTTP calls). In fact, JOpera is fully compatible with

BPEL process execution, but also enables the engine to

run atypical business processes, composed for example of

WS-* and RESTful web services.

At runtime, a JOpera server responding to client re-

quests may run several process instances in parallel,

each having its own independent state. The execution of

processes is broken down into two main steps: process

navigation and tasks dispatching. Navigation is about

determining which task should be executed next, based on

the current state of a process instance, while dispatching

a task requires to carry out the actual task. This could

involve a call to a local Java method or a remote invocation

of a web service.

The recent version of the JOpera engine2 uses two

thread pools: N and D. N is dedicated to run processes

(Navigator worker threads), while D runs tasks (Dis-

patcher worker threads). Each thread of the N and D pools

exchanges task execution requests and task execution

results by directly submitting jobs into the other pool’s

queue. As we are going to show, the code and memory

access patterns of the two kinds of workers are sufficiently

different to warrant grouping them in separate thread pools

to exploit locality. This approach has the potential to make

better usage of the available hardware resources.

III. THE OVERHPC LIBRARY

In this section we describe OverHPC, a Java library for

accessing platform-specific functionalities such as HPCs,

1http://www.jopera.org
2As opposed to having a single thread dedicated to run the process

and a single thread dedicated to run tasks as described in earlier
publications [6].

Table I
A BRIEF DESCRIPTION OF THE MAIN OVERHPC API METHODS.

OverHPC API overview

getSupportedEvents() Returns a list with all the HPCs avail-
able on the current platform.

initEvents() Initializes a list of HPC events to mon-
itor.

bindEventsToCore() Binds the initialized events to a specific
core ID.

bindEventsToThread() Binds the initialized events to a specific
thread PID.

start() Starts acquiring HPC measurements.

stop() Suspends acquisition of HPC measure-
ments.

getEventFromCore() Returns the current value about a spe-
cific HPC being monitored on a core.

getEventFromThread() Returns the current value about a spe-
cific HPC being monitored on a thread.

getThreadId() Returns the PID of the thread this
method is called from.

setThreadAffinity() Applies a custom affinity mask to bind
a specific thread to a core.

getThreadAffinity() Returns the current affinity mask of a
specific thread.

getAffinityInfo() Returns information about the amount
of CPUs, cores per CPU, and how they
are mapped.

low level thread scheduling methods, and hardware ar-

chitecture discovery. The OverHPC library is part of the

Overseer suite freely available on our website3.

A. Hardware Performance Counters

HPCs are registers directly embedded into microproces-

sors to keep track of hardware-related activities and requir-

ing low level accesses to be read. From a Java perspective,

this leads to the implementation and interfacing of native

methods to bring this information from inside a processor

to the application. Each microprocessor architecture family

has different and specific counters that make it difficult

to deliver a portable solution. Our approach is based on

three elements, each acting at different levels inside the

operating system.

At the lowest level the library is based on the libpfm4

API4. The Linux kernel supports direct HPC informa-

tion retrieval since version 2.4.30: unlike other existing

solutions, libpfm4 allows to directly gather information

without specific patches or additional modifications to

the OS kernel. The abstraction level provided by libpfm4

and the availability of HPC-interfaces embedded into last

generations of kernels are key advantages promoting the

use of HPCs as real-time in vivo profilers.

The libpfm4 API is written in C and is interfaced by our

library through a wrapper, using JNI and native methods

to make the required functionalities accessible from Java.

OS calls for retrieval and modification of thread–CPU

bindings are also brought to Java through native methods.

OverHPC hides the complexity of libpfm4 and native

code by offering a set of basic high-level methods to

the user (see Table I). Native resources are automatically

deallocated when no longer necessary, obeying to the

3http://sosoa.inf.unisi.ch
4http://perfmon2.sourceforge.net

http://www.jopera.org
http://sosoa.inf.unisi.ch
http://perfmon2.sourceforge.net


Java programming conventions. In this way, HPCs and

basic kernel scheduling operations can be easily accessed

from the Java runtime in a few lines of code and by

requiring minimal external dependencies, keeping all the

native aspects hidden behind OverHPC.

B. OverHPC Functionalities

OverHPC allows to enumerate all hardware and soft-

ware performance counter events supported by the sys-

tem running the application. Selected counters can be

initialized and assigned to a specific core (to profile in a

hardware-oriented way) or to a specific thread (to measure

them in a software-oriented manner).

Monitoring can be halted and resumed at will, in order

to gather events only within relevant portions of code.

Performance measurements about threads can be gathered

both from inside the same thread or from another one,

enabling to build external supervising and profiling agents.

The amount of counters that can be monitored at the

same time is determined by the hardware architecture and

limited by the available system resources.

While HPCs are mainly passive instruments to observe

the internal behavior of applications, OverHPC also fea-

tures active instruments to control and experiment with

thread–CPU bindings.

OverHPC can be used to acquire the OS kernel process

ID (Unix PID) of the different threads being executed by

the Java runtime and allows developers to modify the list

of processors where these threads can be executed.

OverHPC analyzes the underlying system to deter-

mine how cores are mapped on the available CPUs (in

the case of multiprocessor machines). This information

is an extension to what Java natively offers through

the Runtime.availableProcessors() method.

OverHPC informs the user not only about the total number

of cores, but also about how they are distributed over

different CPUs, giving information such as the number

and IDs of the cores available in each CPU.

This information permits the creation of affinity groups

based on a list of core IDs physically sharing a hardware

resource, such as a common cache (L2, L3) or a privileged

Non-Uniform Memory Access (NUMA) connectivity. For

example, binding the execution of threads accessing and

reusing shared software data structures to cores within a

shared hardware resource may leverage locality to reduce

the number of operations such as thread migrations, cache

evictions, or ineffective prefetches.

IV. EVALUATION SETTINGS

In this section we present and discuss the experiments

we performed to benchmark the JOpera multicore engine,

tuned through thread pools configured to use different

thread–CPU bindings. We first introduce the hardware and

software configurations used for testing. We then present

results including both performance and HPC measure-

ments which confirm the validity of our approach based

on thread–CPU bindings.
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Figure 1. Benchmark workflows used for the performance evaluation.

A. Business Process Benchmarks

To evaluate the JOpera engine performance, we measure

the execution times of four different generic kinds of

business processes: DAG, Parallel, Sequential, and Loop.

These processes have been chosen because they represent

fundamental workflow patterns and are commonly found

in most business process modeling languages. All tasks

belonging to the first three processes perform the same

invocation to a remote service. We adopted this solu-

tion to put more stress on the engine, thus minimizing

noise factors coming from networking issues. The Loop

example invokes simple Java snippets (to increment the

loop counter and test for the loop exit condition) that

are directly executed by the navigator threads. Also, we

measure the execution time of a batch of thousands of

process instances of the same kind. These are all executed

concurrently and started within a very short time window.

The processes have the following control flow structures

(see Figure 1):

• DAG — Each task is connected to others with a

simple direct acyclic graph (DAG) structure. In terms

of BPEL, this corresponds to a <flow> block with

control links.

• Parallel — Each task is completely independent from

the others and therefore can be run in parallel. This

is equivalent to a BPEL <flow> block without any

control flow dependencies between its child elements.

• Sequential — Each task depends on the previous one,

thus the workflow contains a linear sequence of tasks.

This is equivalent to a BPEL <sequence> block.

• Loop — The control flow of this process simply

executes a loop, which iterates for a fixed number

of times (100 iterations). It corresponds to a BPEL

<while> block. The loop body is kept empty.

B. Measurement Environment

Our targeted hardware is a Dell PowerEdge M605. The

M605 is a blade server equipped with 64GB RAM and two
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Figure 2. Overview of the processor and cache architecture of the
M605 used in the evaluation (top). Schematic summary of the different
thread–CPU binding policies (bottom).

2.6GHz AMD Six-Core Opteron processors (for a total of

12 cores). Each CPU comes with a large last-level cache

(6MB L3) shared by all cores. Each core also features

512KB L2 and 64KB L1 caches (see Figure 2 for the

detailed CPU architecture). This machine exploits a cache-

coherent NUMA architecture: each CPU is optimally

connected to a dedicated RAM slot and can efficiently

access its data with minimal latency. When a CPU requires

to access data stored on another memory slot, request

times increase significantly.

Web services invoked by workflows are deployed on a

separated machine used as a standard web server. In order

not to influence the overall execution time with delays

caused by the web server, each service responds the same

message to any request within a fixed time interval. The

size of each request and response message is negligible.

In this way, we can ensure that the measured performance

is not affected by this component.

The two computers are connected through a private

100MBit LAN, with an average message round-trip time

of 0.5 milliseconds.

We executed all experiments under Ubuntu Linux 64 bit

Server Edition version 10.04, running on kernel 2.6.31-20.

As JVM, we used the Oracle Sun Java 64 bit Server

version, build 1.6.0 20-b02 with Hotspot build 16.3-b01.

We used Apache as web server on the second machine.

C. Thread–CPU Binding Policies

We extended the JOpera’s kernel to use thread pools

with customizable thread–CPU binding settings and tuned

configuration parameters for the considered multi-core

machine. In particular, we consider the impact of different

thread–CPU binding policies and scheduling settings on

performance. Hence, we test four different thread–CPU

binding policies affecting the way threads are scheduled

on the cores of the two available CPUs. These policies

describe different methods for assigning two distinguished

groups of threads to two different CPUs.

The four policies are schematically depicted in Figure 2,

and feature the following characteristics:

• Default — The first policy, used as the baseline ref-

erence, is the “Default” configuration: the JVM and

the operating system handle scheduling automatically

without any explicit intervention.

• Per CPU — The second policy gives the OS sched-

uler freedom to dispatch a pool of threads within the

bounds of a single CPU (for example: thread x can

execute on any core of CPU0 but never on cores of

CPU1).

• Per core — The third policy is a stricter version of the

previous one, not only assigning threads of a same

thread pool to a specific CPU but also constraining

their execution to a single core (for example: thread 1

to CPU0–core0, thread 2 to CPU0–core1, thread 3 to

CPU0–core3, etc.).

• Interleaved — This last policy is used to artificially

simulate inefficient scheduling. It works like the

reversed version of the previous policies, by spread-

ing worker threads of a same pool over different

CPUs and by also fixing them to run on interleaved

cores, thus reducing per-processor locality (for ex-

ample: thread 1 assigned to CPU0–core0, thread 2 to

CPU1–core1, thread 3 to CPU0–core2, thread 4 to

CPU1–core3, etc.).

V. MEASUREMENT RESULTS

In order to observe speedups in the JOpera kernel

optimized through different thread–CPU binding policies,

we execute an exhaustive set of measurements with four

different business processes run in batches with a growing

number of concurrent process instances.

In more detail, we execute batches with 5’000, 10’000

and 30’000 instances. The charts in Figures 3a, 4a, and

5a show the relative speedup factor (computed from the

elapsed wall time for each batch) of the “Per CPU”, “Per

core”, and “Interleaved” policies over the “Default” one.

Data obtained from experiments confirm our assump-

tions as follows. First, thread–CPU bindings have a rele-

vant performance impact (either positive or negative) when

applied to the JOpera engine. Their effect on performance

remains consistent across different runs, workflows, and

lighter or heavier workloads. According to the kind of

test and thread–CPU binding policy, we observe speedups

of up to 13% (“Per core”, DAG, 5’000 instances), but

also slowdowns of -8% (“Interleaved”, DAG, 30’000 in-

stances). These variations are significantly higher with

respect to the standard deviation of our measurements,

which is under 2%.

Second, there is one winning thread–CPU binding pol-

icy that always improves performance over the default

JVM scheduling. Among the four compared policies, the

“Per core” policy is giving robust results, as it is always

faster than the “Default” one, and almost always the one

with the highest performance. The advantages coming
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Figure 3. Performance comparison with 5’000 instances (test results
shown relative to the “Default” policy).

from the adoption of this policy can be explained con-

sidering additional measurements done with some HPCs.

A. HPC Measurements

While the previous experiments measure the execution

times, showing only which policy is performing faster than

others, more data is required to precisely identify which

factors contribute to the speedup. With the additional

information provided by HPCs, we can accurately observe

the effect of the various policies at the hardware level.

We used OverHPC to embed observation spots directly

within the JOpera engine’s kernel. In this way, we instru-

mented the engine’s thread pools with counters tracking

the system behavior precisely during the execution of

worker threads code. This observation allows us to explain

our results through two counters: ineffective software

prefetches and L3 cache evictions (reported in the middle
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Figure 4. Performance comparison with 10’000 instances (test results
shown relative to the “Default” policy).

(b) and bottom (c) charts at Figures 3, 4, and 5).

Ineffective software prefetches occur when a prefetch

requests a portion of memory that is already cached. This

request is useless but forces the processor to check for

the availability of the memory specified, spending several

cycles in the operation.

L3 evictions happen when the amount of data that needs

to be stored in the cache is bigger than the available cache.

When a new element is added, a cache replacement policy

determines which previously stored information can be

replaced with the newer data.

Our results show that the amount of ineffective

prefetches and L3 evictions is reduced by the adoption of

binding policies improving locality, such as “Per CPU”

and “Per core”. This observation is confirmed by the

increase of the same counters when the “Interleaved”

policy binds threads across CPUs thus voiding the benefits
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Figure 5. Performance comparison with 30’000 instances (test results
shown relative to the “Default” policy).

brought by the L3 caches. As summarized in Table II, for

all workload sizes, there is a strong correlation between

both of the chosen counters and the system’s performance

measured in terms of the batch execution time.

Table II
CORRELATION COEFFICIENTS

Workload Size Ineffective L3 Cache
(Number of Instances) Software Prefetches Evictions

5’000 0.9842 0.9456
10’000 0.9125 0.9883
30’000 0.9661 0.9946

VI. RELATED WORK

Currently available process execution engines do not

consider the underlying hardware as a privileged source

of performance-related opportunities. Most SOAs system

performance are based on replication and distribution

techniques, like the BPEL engine proposed by Li et al.

in [10], the OSIRIS middleware by Brettlecker et al. [11],

or previous versions of JOpera. This paper complements

existing approaches by showing the potential of such

low level optimizations for complex parallel applications

running on multicore machines.

A. Service Composition Engines and SOA Performance

Service composition engines and middleware are be-

coming critical components in modern SOAs [12]. Key

aspects for such middleware are performance and scala-

bility. For this reason, many research efforts have been

focused on building middleware for high throughput ser-

vice composition.

In [13], Lu et al. propose an architecture based on event-

driven pattern and message passing interactions, using the

CCR runtime available in the .Net framework. They eval-

uate the performance of their design, but do not provide a

comparison to parallel architectures based on thread pools

such as the one presented in this paper. The same approach

is followed in [14], where a composite application for data

mining is tested with several service technologies, from

CCR, C+MPI to Java+MPI. The paper shows how thread-

level parallelism issues have to be considered in order to

obtain good performance.

In [15], Lin et al. propose a QoS management archi-

tecture for coordinating services deployed on a common

virtualized environment. The research is done considering

multicores and virtualization as performance enhancement

technologies, and proposes an adaptive QoS-aware ar-

chitecture able to provide guarantees for QoS contracts.

Another interesting approach to service composition and

business processes orchestration is presented in [16]. The

paper introduces a complex, service-oriented architecture

for streaming service interactions that extends BPEL to

support for data-intensive applications. They also provide

tools for scaling the system by means of dynamic alloca-

tion and replication of cloud resources.

B. Multicore Performance

Modern chip multi-processors provide non-uniform

cache sharing; cores on separate chips usually do not

share caches in the same way as cores on the same chip.

In [17] the authors explore the impact of cache sharing on

multi-threaded programs. While cache sharing can reduce

the communication latency between threads, it increases

cache contention. For many concurrent programs, cache

sharing has insignificant performance impact because of

large working sets. The authors point out that it is es-

sential to transform programs in a cache-sharing-aware

way in order to benefit from shared caches. In addition,

choosing appropriate thread CPU affinities helps improve

performance particularly for such transformed programs.

Thread migration, resulting from load balancing in

the operating system, may impair performance due to

increased L2 cache misses [18]. In [19] the authors explore

the performance impact of thread migration for concurrent



Java workloads. They show that the impact of three

factors —migration frequency, the number of migrations

that cross L2 cache boundaries, and the working set

size— need to be taken into consideration in order to

explain thread migration overhead. For Java workloads,

the authors argue that migration frequency is relatively

low, such that Java applications do not suffer from high

thread migration penalties on current multicores.

In [20] the authors show that some Java benchmarks,

such as SPEC JBB 2005 as well as several benchmarks in

the SPEC JVM2008 suite, are “partially” scalable. These

benchmarks scale well with a smaller number of cores,

but the scalability degrades when more cores are enabled.

The authors argue that for these benchmarks, scalability

is limited by object allocation that consumes the available

memory write bandwidth on several multicore platforms.

Similar to our approach, Autopin [21] is a framework

for multi threaded OpenMP applications performance en-

hancement. It dynamically searches for the optimal thread-

CPU binding maximizing a given cost function. The

Autopin tool automatically checks among a given set of

fixed thread-to-core bindings (defined by the user) for

the best available configuration in order to exploit thread

locality. Each binding layout is called a pinning, and the

framework adaptively selects the best one by accessing

at runtime a predefined set of hardware performance

counters. In this way, automatically, threads monitored by

the Autopin framework are migrated to the best available

CPU/core. The OverHPC library presented in this paper

allows to implement auto tuning techniques similar to the

one adopted by Autopin. Developers can use it to build

custom binding strategies and to monitor a customized

set of hardware performance counters in the same way

Autopin does. Indeed, it is possible to see our approach

as a lower level one, on top of which it is possible to build

any kind of self-tuning binding strategy.

Another comparable approach is the one proposed by

Tam et al. in [22]: an OS-level thread scheduler for

SMP-CMP-SMT machines able to identify at runtime the

best allocation strategy for each executed thread. Like

for Autopin, the scheduler is based on constant hardware

performance counter feedback, but unlike Autopin the al-

location strategy is done entirely by a smart scheduler able

to monitor stall breakdowns and consequently to detect so-

called sharing patterns in order to obtain a realistic thread

clustering aimed to force affinity migrations of related

threads (i.e., threads influencing the same performance

counter, for example by sharing the same memory).

C. Hardware Performance Counters

Hardware performance counters have recently emerged

as one of the privileged sources of information to im-

prove software performance. HPCs are widely adopted

and integrated in the software development cycle [23]

and an increasing number of tools for accessing and

manipulating performance counters has been proposed.

PAPI, the Performance Application Programming Inter-

faces library [23] is probably the most widely adopted

tool for measuring hardware performance counters. The

library offers a high-level, platform-independent access to

CPU counters, providing developers with a standard way

to access specific platform related counters as well as

generic platform independent counters. Recently, a new

version of the library, called Component-PAPI (PAPI-C

[24]) has been announced in late 2009. The new library

extends the standard PAPI framework with the possibility

to obtain informations not only from CPU related events,

but also from other sources. Examples of such sources are

GPUs, memory interface chips, network interface cards,

as well as BIOS, ACPI and LM related sensors.

VII. CONCLUSION AND FUTURE WORK

Prevailing middleware for business process execution

has not been optimized for running on recent processors

with modern multicore micro-architectures. While multi-

threaded middleware can generally benefit from an in-

creasing number of available cores, thread migrations due

to operating system scheduling and inefficient access to

shared data often limit performance.

In this paper, we explore how JOpera, an existing, Java-

based business process execution engine, can benefit from

customized thread–CPU bindings. By restricting the cores

on which certain threads may execute, we are able to force

threads that are likely to access shared data to execute on

cores that share a common cache, resulting in improved

thread communication. This approach works particularly

well for middleware using multiple thread pools, where the

threads of each pool are likely to access common data,

whereas threads of different pools require less frequent

communication.

Our extensive performance evaluation on a recent mul-

ticore machine with different business processes confirms

that properly defined thread–CPU bindings improve per-

formance by up to 13%, taking a manually tuned engine

configuration as baseline. However, the tuning of thread–

CPU bindings must be done carefully: inappropriate bind-

ings can result in performance deterioration. With the

aid of hardware performance counters, we explore the

reasons for the measured performance impact of thread–

CPU bindings.

Since setting of thread–CPU bindings and the use of

hardware performance counters are not supported in the

standard Java class library, we provide the new library

OverHPC that offers these missing features. The OverHPC

library is publicly available.

While in this paper we demonstrate that existing

service-oriented middleware using thread pools can be

optimized for modern multicores by properly manag-

ing thread–CPU bindings, in our ongoing research work

we are exploring fundamentally new middleware de-

signs to further improve performance on recent multicore

micro-architectures. Moreover, we are considering auto-

tuning mechanisms inside the engine to refine various

performance-relevant configuration parameters, such as

thread pool sizes, at runtime, leveraging monitoring infor-

mation from hardware performance counters. Finally, we



will validate our middleware design on a wide spectrum of

modern multicore architectures, including Intel Nehalem

and AMD Opteron CPUs.
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