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This paper describes a SAR image focuser application exploiting General-purpose Computing On Graphics Pro-
cessing Units (GPGPU), developed within the European Space Agency (ESA) funded SARIPA project. Instead of
relying on distributed technologies, such as clustering or High-performance Computing (HPC), the SARIPA pro-
cessor is designed to run on a single computer equipped with multiple GPUs. To exploit the computational
power of the latter, while retaining a high level of hardware portability, SARIPA is written using the Open Com-
puting Language (OpenCL) framework rather than the more widespread Compute Unified Device Architecture
(CUDA). This allows the application to exploit both GPUs and CPUs without requiring any code modification or
duplication. A further level of optimization is achieved thanks to a software architecture, whichmimics a distrib-
uted computing environment, although implemented on a single machine. SARIPA's performance is demonstrat-
ed on ENVISAT ASAR Stripmap imagery, for which a real-time performance of 8.5 s is achieved, and on Sentinel-1
InterferometricWideswath (IW) raw data products, for which a near-real time processing time of about 1min is
required. Such a performance has the potential of significantly reducing the storage requirements for wide-area
monitoring applications, by avoiding the need of maintaining large permanent archives of Level 1 (focused) im-
agery, in favor of lighter Level 0 (raw) products, which can be focused on-the-fly within the user's application
processing pipelines at almost no overhead.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

With the successful launch in the last two years of the first four Sen-
tinel satellites, two of which (Sentinel-1A and 1B) carrying a Synthetic
Aperture Radar (SAR) payload, users and service providers in the re-
mote sensing field are more and more faced with Big Data handling
problems. The Sentinel routine acquisition plans, their free and open
data policy, and the commitment of the European Copernicus Pro-
gramme to ensure mission continuity up to 2030 is unprecedented
and has already significantly increased the number of Earth Observation
(EO) data users. This increased data availability, combinedwith thema-
turity level of several data processing techniques, which have been de-
veloped since the early '90s, has the potential of boosting research
activities and commercial services based on satellite data, and also rep-
resents a prerequisite for the development of cost-effective, and poten-
tially also near-real-time, monitoring services.

On the other hand, it is well established that new technological solu-
tions are required to handle Big Data. An effective approach for some
users and applications is to run computationally-intensive algorithms
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on supercomputers or distributed computing systems, which consist
of a large number of physical machines (worker nodes), located in cen-
tral processing facilities, such as the ESA G-POD environment (e.g., De
Luca et al., 2015), or virtualized through cloud computing (e.g., Zinno
et al., 2015). At the same time, several research institutions and SAR-
data service providers currently rely on small to medium size in-house
processing facilities (e.g., local clusters or just powerful workstations).
Both scenarios benefit from solutions which improve the degree to
which the computational resources of single machines are exploited.
In particular General-purpose computing on Graphics Processing Units
(GPGPU) has received lots of attention in recent years, since potentially
it can provide access tomassively-parallel processing capabilities (up to
several thousands of cores) on single workstations, enabling these to
perform as “personal supercomputers”. Furthermore, the availability
of frameworks including programming APIs for standard languages
(like C/C++) allows applications with a high level of portability across
different hardware platforms (ranging from laptops to multiple-GPU
servers) to be built, although an effort is required in terms of software
architecture design and code refactoring.

This paper describes a performance-optimized SAR image focusing
software, developed from scratch within the ESA SARscape Image Pro-
cessor Accelerator project (SARIPA), and which is not related to the op-
erational processor used by ESA for the generation of Level 1 SAR
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products. The main goal of SARIPA is to explore the potential of GPGPU
technology to reduce processing time on a singlemachine, thus tackling
the data deluge problem by providing a faster and portable local pro-
cessing, requiring less computational resources compared to High-per-
formance Computing (HPC) and cloud computing. ENVISAT ASAR
Image Mode (IM) and Sentinel-1 Interferometric Wideswath (IW) raw
images are used as a test-case, with the goal of achieving near-real-
time focusing performance on a single computer with multiple GPUs.

Near-real-time SAR image focusing has been the topic of several re-
cent papers, which have addressed the exploitation of multi-core CPUs
(Imperatore et al., 2016), or GPUs, using theComputeUnifiedDeviceAr-
chitecture technology (NVIDIA, 2016a) proprietary to NVIDIA (Zhang et
al., 2016; Trittico et al., 2014; Di Bisceglie et al., 2010). SARIPA is based
on the more portable Open Computing Language technology (OpenCL,
2016), which unlike CUDA allows the generated software to be execut-
ed on a wider range of devices, including computers with non-NVIDIA
GPUs or without any GPU at all.

This paper shares the experience gathered through the design and
development of SARIPA, whose outcome is not limited to SAR focusing,
but could be reused for several other computationally intensive SAR
processing algorithms (e.g., interferometry, measurement of deforma-
tion time series). The strengths and weaknesses of basing SARIPA on
the more liberal OpenCL are discussed in Section 2, whereas the soft-
ware architecture is described in Section 3. Section 4 details the
processor's performance and its potential impact on the Big Data prob-
lem in a concrete application scenario. Discussions and conclusions are
provided in Sections 5 and 6 respectively.
Table 1
Platform used for the FFT performance tests.

Machine-A (FFT performance test)

OS Windows 7
CPUs 1× Intel Core i7-930 @2.8GHz (4 cores)
RAM 12 GB
GPU 1× NVIDIA TESLA M2050 Fermi (3 GB of VRAM)
Storage Not relevant for the test
2. Frameworks for multi-core CPU and GPU exploitation

Several frameworks have emerged in recent years to leverage the
computational power providedbymodernGPUs. These range fromded-
icated libraries and Software Development Kits (SDKs) to extensions di-
rectly embedded into compilers such as Microsoft's C++AMP and
OpenACC. Concerning GPU computing, the two most widespread
frameworks are the Compute Unified Device Architecture (NVIDIA,
2016a), and the Open Computing Language (OpenCL, 2016). CUDA
and OpenCL are also frameworks that provide developers with the fin-
est control over code implementation and performance, unlike
C++AMP and OpenACC, which focus on making the GPU-side aspects
as transparent and automatic as possible through high-level abstrac-
tions (Hoshino et al., 2013).

CUDA is anNVIDIAproprietary parallel computingplatformandpro-
gramming model, supporting various languages (e.g., C, C++, FOR-
TRAN), and providing optimized libraries for standard mathematical
algorithms, like Basic Linear Algebra Subprograms (BLAS) and the Fast
Fourier Transform (FFT). CUDA only works on GPUs that are produced
byNVIDIA, which on one hand limits code portability to other hardware
platforms (i.e., GPUs produced by AMD or Intel and GPU-less com-
puters), on the other it provides a simpler and high efficiency frame-
work, since NVIDIA-specific optimizations can be automatically
performed and new features can be added without requiring the con-
sensus of other hardware manufacturers. Furthermore, NVIDIA is also
the producer of the most widespread cards for GPU computing, namely
the TESLA series (NVIDIA, 2016b), which are often used in HPC.

OpenCL is a framework for writing applications that can be executed
across a series of heterogeneous computational devices that include not
only GPUs, but also CPUs, Digital Signal Processors (DSPs), Field-Pro-
grammable Gate Arrays (FPGAs) and ARM processors. OpenCL is an
open standard maintained and supported by the nonprofit Khronos
Group consortium (Khronos, 2016). Compared to CUDA, OpenCL pro-
vides a more abstract framework, allowing direct portability of the
code between hardware solutions of different vendors (NVIDIA, AMD
and multi-core CPUs), at the expense of a slightly steeper learning
curve and less versatile implementation of hardware-specific
optimizations, e.g., concerning on-boardmemory and data communica-
tion with the CPU and with other GPU cards.

From the programming point of view, the CUDA and OpenCL frame-
works show many similarities. In both a distinction is made between
two logical parts of the code, namely a host part, to be executed on
the CPU of the host machine, and a so-called device part, to be executed
by many parallel threads (kernels) on the selected GPGPU device(s).
Similarly, both frameworks distinguish between host and device mem-
ory, and provide functions to handle allocation and data-transfer be-
tween these. Concerning the API, this is unique in OpenCL, whereas
for CUDA two APIs providing the same performance are available: the
CUDA Driver API and the CUDA Runtime API. The former is also very
similar to OpenCL, with a high correspondence between functions of
the two frameworks.

Concerning performance, it is expected for GPU-based
implementations to outperform CPU-based ones, as the workload, i.e.,
number of floating-point operations per second (FLOPS), increases
(Lee et al., 2010). Due to its higher abstraction level and portability,
OpenCL implementations have been found in the past to be slower
than CUDA ones (Fang et al., 2010), although recently this gap has
been reduced significantly (Kim et al., 2015) and mainly depends on
the quality of the runtime implementation.

In addition, a common limitation for a generalized GPGPU-based ap-
proach is related to the size of the workload. The GPU is a kind of sec-
ondary computer within the main computer, featuring its own
processor (the GPU), its own memory (the video RAM, or simply
VRAM), its own conventions (instruction set, caching, data alignment,
timing, etc.) and its own connectivity (usually a fast PCI-Express bus
connecting the graphics card with the rest of the machine). This
means that for a given task, the GPU-side execution performs a series
of additional steps that are not required by its conventional CPU coun-
terpart. A typical GPU-side computation consists in: 1) copying relevant
information from system to devicememory; 2) the compilation, param-
eterization and execution of a specific series of instructions; 3) waiting
for the asynchronous execution to terminate; 4) copying the results
back from device to system memory. Depending on the size and com-
plexity of the problem, the overhead incurred by these four operations
can be higher than the computational speedup provided through
GPGPU.

These considerations make the choice of when and how to use
GPGPU in SAR processing a more delicate matter, since typically
image-wide operations (in principle a perfect match for GPU-side exe-
cution) are interleaved by smaller operations (e.g., setting up filtering
parameters, sampling sub-image portions, etc.) which may introduce
a severe overhead.

To gauge the impact of the aforementioned aspects and to guide the
design and optimization of SARIPA, several tests, detailed in Peternier et
al. (2013), were performed to analyze the behavior of common SAR-re-
lated algorithms carried out via GPGPU. In this sectionwe discuss a per-
formance test concerning 1D FFT calculation, since this is a core
algorithm, which is heavily used within many SAR processing applica-
tions, including image focusing. The tests were carried out on Ma-
chine-A (Table 1).

We compare the highly-optimized FFT provided in the Intel's Math
Kernel Library (MKL), taken as a reference FFT implementation for
CPU-only performance, with GPU processing using CUDA (using
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cuFFT, released as component of the NVIDIA CUDA SDK) and OpenCL
(using the FFT implementation released by Apple). For each power of
two between 21 and 223, we carry out 7 iterations, each time computing
an FFT of size 2N. The first two iterations are discarded, to let CUDA and
OpenCL load all the information and allocate all their internal structures,
since several of them are only initialized at the first real usage (lazy-
loading). Timing results, measured using native counters such as the
Read Time-stamp Counter (RDTSC) and performance counters, are
based on the average of the last 5 runs (the observed variance between
independent runs is b5%). Power saving, dynamic CPU frequency scal-
ing (including Intel's Turbo Boost) and Simultaneous MultiThreading
(SMT) are disabled to provide more stable and repeatable results. For
the same reason, we used the single-CPU Machine-A instead of the
more powerful Machine-B (used later for the image focusing tests) to
avoid having to account for latencies introduced by the Non-Uniform
Memory Architecture (NUMA) of the latter.

The results are reported in Fig. 1 and provide a tangible evidence of
the behaviors previously explained. For large workloads (i.e., sample
sizes N N 213), both GPU-based implementations outperform the MKL
CPU-only FFT implementation. For smaller FFT lengths (N b 214), the
GPU performance is degraded because of the overhead introduced by
the data communication between host and device-memory and by the
preparation of the kernels prior to their execution. In such cases, perfor-
mance becomes comparable or even greater than the time required for
the calculations. The impact of the overhead is clearly seen on the left
side of the chart, where CUDAandOpenCL require almost the same con-
stant number of seconds despite the growing number of samples.
Concerning the two GPU implementations, the CUDA cuFFT version is
slightly faster than the OpenCL-based one, mainly for larger sample
sizes (N N 218). This speed difference confirms a measurable perfor-
mance advantage of CUDA over OpenCL thanks to its closed ecosystem,
which allows NVIDIA to avoid dealing with several issues that must be
handled by the portable and abstract layer available through OpenCL.
This aspect is also highlighted by the lower overhead required to start
a cuFFT compared to an OpenCL-based one, although both the CUDA
and OpenCL implementations have been executed on exactly the same
hardware. Fig. 1 also confirms that GPGPU in general is only efficient
when a problem reaches the critical mass required to compensate the
overhead incurred for setting up and igniting the GPU-side processing.
When the problem is small (in our case, N b 214), CPUs are a faster op-
tion than GPUs. As detailed in Section 3.2, the critical mass for efficient
GPU-processing is easily reached for SAR image focusing.

The software presented in the following section is written consider-
ing all these aspects tomaximize efficiency by offloading data-intensive
tasks to the GPU and by keeping CPU-side computations mainly for I/O
operation balancing, algorithm parametrization and multiple-process
orchestration.
Fig. 1. 1D FFT performance test comparing MKL (CPU), CUDA (GPU) and OpenCL (GPU).
3. Methods

3.1. Processor architecture

The SARIPA processor is designed to work on a single high-end ma-
chine, which could indifferently be a supercomputer node, a worksta-
tion or a server computer, by deploying a locally-distributed series of
computational processes that communicate through shared memory
and shared message queues. This provides a very fast, zero-copy mech-
anism that allows processes to access memory areas that are shared
with other processes. In this way, any modification is immediately visi-
ble from the other processes without incurring into the typical latency
of network distributed systems.

Theprocessor is based on the client-server architecture shown in Fig.
2. Its input consists of a list of user-specified operations to be carried out
on a set of input rawdata files. The output is the corresponding set of fo-
cused images. A console application (client) allows users to specify a list
of task requests, which are registered and queued by the SARIPA daemon
(server), and scheduled for execution on one or more worker processes.
Each of these is associated with a detected hardware device (e.g., a
GPGPU-enabled device or a CPU, depending on the selected OpenCL
runtime). The server periodically monitors the overall system resources
(e.g.,memory use, I/O levels, CPU load) and the status of theworker pro-
cesses (pending tasks) to prevent saturation of the system and to iden-
tify where to queue new tasks (load-balancing). Once all the scheduled
tasks have been executed, the user receives a notification from the
server.

Each worker process consists of a processing pipeline, which imple-
ments a sequence of operations, including signal processing algorithms
(e.g., FFT, convolution, etc.), represented by a set of filter components,
and of an instance of a SAR acceleration engine (SARX engine compo-
nent). The latter is a library created on top of OpenCL featuring a com-
pact API to simplify and abstract the implementation and usage of
GPGPU-specific elements (such as devicememory andOpenCL kernels).
In the following, such a worker process instance, containing a process-
ing pipeline, shall be referred to as pipeline worker process.

For taskswhich have a processing duration comparable to that of the
data read/write operations, a dedicatedworker process containingmul-
tiple I/O unit components is used. This stand-alone, singleton worker
process is responsible for optimizing multiple concurrent I/O requests,
by internally prioritizing reading requests with respect to focused
image writing operations, in order not to let the pipeline worker pro-
cesses starve due to the lack of new input data. When new input infor-
mation is required by one of the pipeline worker processes, it quickly
creates a copy of the disk data into the shared memory allocated by
the caller to immediately release disk usage. This shared memory seg-
ment (instead of the disk) is then used by the pipeline worker process
that owns it for further processing. The pipelineworker processes inter-
nally rely on these sharedmemory segments to transfer information to/
from the OpenCL buffers used by the SARX engine. Once all the pipeline
operations have been executed on a specific shared memory segment,
the I/O unit takes its ownership and writes the output to the disk
when other pipeline worker processes are not waiting for new input
data. This reduces contention of the disk, which is shared by all the pro-
cesses runningon themachine, byminimizing thenumber of disk-relat-
ed operations and by dynamically changing their priority as required. In
the following, such a singletonworker process containing I/O units is re-
ferred to as I/O worker process.

3.2. Focusing algorithm

The focusing algorithm implemented in SARIPA is shown in Fig. 3,
and is suitable for Stripmap (e.g., ASAR IM) as well as for TOPS mode
data (e.g., Sentinel-1 IW). Firstly, some relevant parameters are extract-
ed from the raw data (e.g., changes in the Sample Window Start Time
and/or in the range and azimuth sampling rates), and from the sensor



Fig. 2. SARIPA processor architecture.
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auxiliary files, namely the instrument and calibration auxiliary files and
optionally a precise state-vector file. At this stage, the azimuth frequen-
cy modulation rate is also estimated with the geometric method of
Cumming and Wong (2005), since this parameter is required for the
computation of some image-wide parameters for TOPS data (CLS,
2016). The steps enclosed in the dashed rectangle in Fig. 3 are then ap-
plied to thewhole image for the Stripmap case, and to each burst for the
TOPS case. For both acquisition modes the raw data is first decoded and
then range compressed, carrying out frequency domain matched filter-
ing for each azimuth line. Subsequently, theDoppler centroid is estimat-
ed with the method of Madsen (1989), and the data is transformed to
the range-Doppler domain by applying 1D azimuth FFTs to each column
of range compressed data. In this domain, autofocus is optionally carried
out for the Stripmap case and azimuth compression is efficiently per-
formed using a variant of the original Omega-k algorithm (Cafforio et
al., 1991), also known as monochromatic Omega-k (Bamler, 1992).
The first step of the latter consists in the so called Stolt interpolation,
which is approximated by a complex exponential multiplication for
each range column. Azimuth compression is then completed by
transforming the data to the 2D frequency domain by applying a 1D
range FFT to each data column, multiplying by a 2D complex reference
function and by taking a single 2D IFFT (Cumming and Wong, 2005).
Fig. 3. Stripmap and TOPS focusing algorithm.
For TOPS mode acquisitions, the azimuth antenna steering requires
the azimuth compression processing block to be respectively preceded
and followed by a Doppler frequency domain and by a time domain
unfolding and resampling step (De Zan et al., 2006). The former is re-
quired to assign the correct (un-aliased) Doppler frequency to each
data line prior to azimuth compression, since the Doppler centroid var-
iation in the azimuth dimension exceeds the Pulse Repetition Frequency
of the radar. Time-domain unfolding is instead required to assign the az-
imuth-compressed returns to their correct zero-Doppler azimuth posi-
tions, since some of these will lie outside the burst acquisition start
and stop times, due to the squinted viewing geometry associated with
the azimuth antenna steering. Each unfolding and resampling block is
a 1D step applied in turn to each data column, and consists of amosaick-
ing sub-step (i.e., a n-fold replication of the input data column), a de-
ramping sub-step (i.e., a multiplication by a complex exponential), a
low-passfiltering anddecimation (or resampling) sub-step (e.g., carried
out with a FIR filter), and a re-ramping sub-step (i.e., a multiplication by
a complex exponentialwhich reinstates the phasemodulation compen-
sated during de-ramping). A more detailed description is considered to
be outside the scope of this paper and is provided in CLS (2016).

To relate to the efficiency considerations discussed in Section 2, it is
useful to gauge the sizes of the data buffers and FFTs involved in the
above-described algorithm. For ENVISAT ASAR IM, the input data size
is roughly in the order of 30,000 lines (azimuth dimension) × 6000 col-
umns (range dimension). For Sentinel-1 IW data, a raw burst typically
contains about 1500 lines × 20,000 columns. For the processing steps
requiring FFT algorithms, it is convenient to pad the data to a size,
which can be expressed as any combination of powers of small integers
(e.g., 2, 3, 5). An overview of the FFT sizes required for each acquisition
mode is provided in Table 2. Since the execution of N FFTs of size M re-
sults in an overall workload batch size of N × M, the critical mass re-
quired for efficient GPU processing (Fig. 1) is easily reached for each of
the processing steps.

3.3. Processing pipelines

In this section we discuss the application of the proposed architec-
ture (Fig. 2) to the focusing algorithm described in Section 3.2. In the
ENVISAT ASAR IM case, a single pipeline worker process is used to



Table 2
Number and size of the FFTs required by each focusing algorithm step.

Range compression Azimuth FFT Omega-k azimuth compression

Num. of 1D FFTs 1D FFT size Num. of 1D FFTs 1D FFT size Num. of 1D FFTs 1D FFT size 2D IFFT size
ASAR IM 30,000 213 6000 215 215 213 215 × 213

Sentinel-1 IW 1500 215 20,000 211 211 215 211 × 215
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focus one image. There is also always one single instance of the I/O
worker process. The same instance can beused bymore pipelineworker
processes when a batch of multiple images to focus is queued through
the server. Each processing pipeline implements the steps shown in
Fig. 3. Depending on the available hardware resources, multiple worker
process instances featuring the same pipeline can be spawned by the
server to allow focusing of several raw data strips in parallel. The server
is responsible for spawning and shutting down all theworker processes.
When the server receives a request to focus a set of rawdata products, a
first batch of decoding and focusing tasks is sent to the available pipeline
worker processes. Each of these in turn sends a request to the I/Owork-
er process to load the raw data and decode it within its own shared
memory segment using one of the available I/O units. When I/O is fin-
ished, the pipeline worker process is notified and can carry out the fo-
cusing steps, while the I/O worker process carries out similar requests
for other pipeline worker processes. When focusing is terminated, the
pipeline worker process instructs the I/O worker process to write the
output data to disk, and becomes available to receive the next raw
data focusing task.

For the Sentinel-1 IW case, two processing pipelines have been im-
plemented. Thefirst one carries out rawdata decoding,whereas the sec-
ond one performs the remaining focusing steps in Fig. 3. Given the raw
data of a single IWproduct, the server queues the decoding task to a sin-
gle pipeline worker process and leaves the other instances available for
focusing. These are used to focus several IW raw data bursts in parallel.
More in detail, when the server receives the request to focus an IW raw
data product, the whole contents of the data file are loaded into the sys-
tem memory by the pipeline worker process where the decoding task
has been queued. This process identifies and extracts the raw data
bursts from the stream of space packets, decodes them, and sends one
focusing request for each decoded raw burst back to the server, which
in turn queues the request to the next available pipelineworker process.

For the Sentinel-1 IW case, the I/O operations are directly carried out
within each pipeline worker process, rather than passing through the
singleton I/O worker process. Since the ratio between the duration of
the I/O operations and focusing is higher for an ENVISAT ASAR raw
data file, compared to a Sentinel-1 IW burst, which is smaller in size
and requires additional processing time (e.g., for the unfolding and re-
sampling processing steps in Fig. 3).
Table 3
Platform used for the focusing performance tests.

Machine-B (focusing performance test)

OS Windows 7
CPUs 2× Intel Xeon E5-2670 @2.6GHz (8 cores each)
RAM 64 GB
GPU 4× NVIDIA Tesla K20 (5 GB of VRAM each)
Storage 2× standard SSD HDs (500 MB/s); 1× high performance SSD HD (2 GB/s)
3.4. Performance optimization

The proposed architecture optimizes the workload execution along
the two axes shown in Fig. 2: horizontally, it improves the throughput
by splitting the workload processing into several parallel worker pro-
cesses; vertically, the latency required by each worker process is re-
duced by taking advantage of the additional computational power
offered by multicore CPUs and GPGPU (using GPUs when available or
multicore CPUs through the OpenCL CPU-only runtime).

Performance optimization is carried out at several levels. Firstly, the
signal processing algorithms implemented in the filter components in
Fig. 2 are written in OpenCL, allowing the pipeline worker processes
to be executed on CPU (mainly small operations to avoid the overhead
mentioned in Section 2), as well as on GPU (to offload largeworkloads).
As mentioned in Section 1, the latter features a significantly higher level
of parallelism. For instance, a modernmulti-core processor with 8 cores
and 2 SMT units, when optimally used, can execute a maximum of 16
threads simultaneously. A standard GPU features typically at least 512
cores that can process 512 (and more) threads at the same time.

A second level of optimization is given by tuning specific OpenCL pa-
rameters, such as the workgroup sizes and kind of host-device memory
transfer, according to the underlying hardware. From this perspective,
optimal settings are platform-specific and are typically documented in
hardware-manufacturer guidelines and best-practice recommenda-
tions. While on the one hand OpenCL features code-level portability
across heterogeneous platforms, on the other hand performance is not
guaranteed. In our approach, the SARX engine component (Fig. 2) iden-
tifies, whenever possible, the characteristics of the underlying OpenCL
platform and automatically tunes dynamic parameters to have a better
matching between the software and the underlying hardware architec-
ture. For example, NVIDIA provides a faster memory-copy mechanism
using “memory pinning”, which is automatically activated by the
SARX engine when the NVIDIA OpenCL runtime is used. The size of in-
ternal OpenCL memory buffers is also dynamically allocated in function
of the detected device memory. In this way, larger portions of data can
be processed in one single execution on devices with larger amount of
memory.

A third level of optimization is provided by the SARIPA daemon
(server) component, which acts as load-balancer among the available
worker processes. In this way, pipeline worker processes that are al-
ready busy are not overloaded by receivingnew taskswhenotherwork-
er processes are idle. The server daemon is also responsible for
inspecting the underlying hardware and allocating the ideal number
of worker processes according to the amount of detected resources,
which allows automatic portability and adaptation. In the ENVISAT
ASAR case, the I/Oworker process also rearranges data read/write oper-
ations to make sure that pipeline worker processes always have fresh
information to ingest. In this way, all the physical resources provided
by the computer, i.e., CPU and GPU computational power, system and
device memory, and disk storage are balanced, maximizing their
exploitation.

4. Results

4.1. Testing environment

The test-runs described in this section are obtained with the server-
class Machine-B, whose properties are listed in Table 3. The machine is
configured with SMT enabled, dynamic frequency scaling (including
power saving and Turbo Boost) disabled, and by assigning each worker
process to one of the two NUMA nodes (one for each CPU and 32 GB of
RAM). By using a fast SSD disk we can reduce I/O latencies due to data
loading from disk to memory (and vice versa). Workload acquisition
from external sources such as network streams of data is not considered
in this work, although the proposed design is compatible with a



Fig. 4. ENVISAT ASAR IM focusing. Timing breakdown for OpenCL CPU (left) and GPU implementation (right).
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potential future extension in this direction, maximizing the power of
each computational node in a HPC context.

OpenCL on CPU is executed using the Intel CPU-only runtime version
15.1, while the runtime provided by the NVIDIA GPU driver is used for
GPGPU.

4.2. ENVISAT ASAR IM

A standard raw data frame acquired by ENVISAT ASAR IM is first fo-
cused with an external software (SARscape®) to obtain a reference in
terms of performance and image quality. The same frame is then fo-
cused with SARIPA, using OpenCL on CPU, as well as OpenCL on GPU ac-
celeration. The two processing pipelines are referred to in the following
as SARIPA-CPU and SARIPA-GPU respectively. The latter requires about
8.5 s, which is about half of the ~16 s Stripmap mode acquisition time,
whereas SARscape and SARIPA-CPU required 83 s and 44 s respectively.
The fact that SARIPA-CPU outperforms SARscape by almost 50% indi-
cates that the on-the-fly code generation performed by OpenCL (using
available hardware extensions such as SSE and AVX registers) is more
efficient than standard (parallel) C++ code in exploiting the high-
end dual-CPU used for the experiments.

Concerning the SARIPA-CPU and SARIPA-GPU performance, Fig. 4
(left) shows that for SARIPA-CPU the two most time-consuming steps
are autofocus and Omega-k azimuth compression, which, as expected,
are computationally intensive, whereas I/O operations (raw data
decoding and focused data writing) take up only 11% of the 44 s re-
quired to process the image. The SARIPA-GPU case, Fig. 4 (right), is
Fig. 5. ENVISAT ASAR IM focusing. Per-image processing times as a function o
completely different, since although the azimuth compression is still
one of the most time-consuming tasks, the I/O operations (which take
exactly the same time as for the previous SARIPA-CPU case) amount
to 51% of the 8.5 s needed to focus the image.

As mentioned in Section 3, although only one pipeline worker pro-
cess is used for focusing one ENVISAT ASAR IM image,moreworker pro-
cesses can be used to focus several images in parallel. The SARIPA-CPU
and SARIPA-GPU performance on the test machine as a function of the
number ofworker processes is shown in Fig. 5 (this number does not in-
clude the I/Oworker process,which is always one). The end-to-endpro-
cessing time per image is used as a quality factor (the lower the better).
SARIPA-GPU exploits the 4NVIDIA TESLAGPUs available on the testma-
chine, allocating one GPU to each pipelineworker process.With 4 GPUs
and 4 pipeline worker processes, 11.6 s are required to focus 4 images
(i.e., 2.9 s/image). Compared to the single-GPU case, this corresponds
to a speedup factor of 3, and is therefore 25% less than the ideal perfor-
mance (a speedup factor of 4). This is a reasonable achievement, since
while on one hand the hardware resources (number of GPUs) are in-
creased fourfold, on the other themachinememory busses and number
of hard-disks is constant, creating contention and reducing scalability.

The problem of a finite amount of resources shared by a growing
number of worker processes is clearly visible in the SARIPA-CPU perfor-
mance scalability (Fig. 5). In this case, the total number of cores provid-
ed by the two CPUs is shared among the available pipeline worker
processes, so that the allocation of more worker processes only margin-
ally improves the scalability of the system, to the point (5 worker pro-
cesses) where more pipelines are only consuming resources without
f the available pipelines for the OpenCL CPU and GPU implementations.



Fig. 6. Sentinel-1 IW (TOPS) focusing. Timing breakdown for OpenCL CPU (left) and GPU implementation (right).
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bringing any additional speedup. This problem is also due to the system
memory consumed by each worker process. When the CPU-only
runtime of OpenCL is used, standard system memory is used instead
of devicememory.When N5worker processes are used, all the available
system memory is consumed and disk swapping dramatically reduces
performance.

4.3. Sentinel-1 IW

In the Sentinel-1 IW case, there is no external non-OpenCL reference
implementation to compare with, since information concerning the
performance of ESA's operational processor and its hardware configura-
tion is not publicly available. Therefore, only an inter-comparison be-
tween the SARIPA-CPU and SARIPA-GPU is presented.

The wall-time required to decode and focus a full frame (250 km, 35
bursts) on the targetmachine is 211 s for SARIPA-CPU, using an optimal
number of 6 pipeline worker processes (Fig. 7), and 65 s for SARIPA-
GPU, using 4 worker processes (again, one per available GPU). This is
a near-real-time performance, considered the ~30 s TOPSmode acquisi-
tion time: in principle, the alternation of two computers like the target
machine could be enough to feed a stream of raw-to-focused images
for one of the Sentinel-1 satellites.

As in the ENVISAT ASAR IM case, Omega-k azimuth compression is
the most time-consuming task (Fig. 6). Unlike ENVISAT ASAR IM
though, I/O is less of a concern, since for each burst about 250 MB of
data enters the focusing pipeline and almost the same size is written
on output. For the ENVISATASAR IM case, the input and output data vol-
umes were 150 MB and 1.1 GB respectively. There is an interesting dif-
ference in the CPU vs GPU performance of the Doppler frequency-
domain Unfolding and Resampling (UFR) step. In this case (unique in
the whole SARIPA project), CPU is actually faster than GPU. The reason
is technical and linked to the hardware nature of CPUs: the Doppler
Fig. 7. Sentinel-1 IW (TOPS) focusing. Per-burst processing times as a function
UFR uses a lot of memory accesses to neighbor memory areas. Since
GPUs have a limited cache support, this information is immediately
lost and data must be recovered from (distant) VRAM memory each
time, while on CPUs the information is more likely available in the
CPU cache, making the processing faster.

Concerning scalability, with respect to an increase in worker pro-
cesses, a result comparable to the ENVISAT ASAR IM case is achieved
(Fig. 7).

4.4. Big data implications

To highlight the potential advantages of SARIPA in the Big Data con-
text, we consider the case of a user, who requires focused imagery on a
continental scale for his/her application.We assume the area of interest
to be the whole of Europe (latitude 34 N to 71 N and longitude 26W to
43E), and we consider two SAR datasets, namely the entire ENVISAT
ASAR IM archive (from year 2002 to 2012) and the current Sentinel-1
IW dual-polarization image archive (from year 2014 to 31 Jan. 2017).

In the case of ENVISAT ASAR IM, the total Level 0 data (raw seg-
ments) corresponds to about 121,000 standard frames (15 s duration),
with an average size of 150 MB, yielding a total data volume of
17.3 TB. The total Level 1 (IMS) product volume for the same dataset
amounts to about 69.2 TB (see Table 4).

By applying the performance scored by SARIPA in Section 4.2, and
considering four parallel pipelines (one per GPU), which are thus capa-
ble of processing four ASAR IM Level 0 standard frames concurrently
(with a throughput of about 1 image each 3 s), the focusing of the
whole dataset would require roughly 100 h to complete (i.e., four days
and five hours).

In the ASAR case it is hard to quantify the time required to obtain the
Level 0 products, since these are not provided through a web service,
but on request. ASAR IM Level 1 products are instead available through
of the available pipelines for the OpenCL CPU and GPU implementations.



Table 4
ENVISAT ASAR IM archive over Europe (2002 to 2012).

Num. of frames Size of one frame Total size

Level 0 (RAW) 121,000 150 MB 17.3 TB
Level 1 (IMS) 600 MB 69.2 TB

Table 6
Download time for the Sentinel-1 IW data volumes reported in Table 5.

1 MB/s 10 MB/s 100 MB/s

Level 0 (RAW) almost 3 years ~108 days ~11 days
Level 1 (SLC) 9 years and a half almost 1 year ~35 days
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the On The Fly (OTF) dissemination service. A user is entitled to a daily
quota of up to 30 products (although more can be downloaded if there
are no concurrent requests). The download of a standard Level 1 frame,
in our experience, starts a few minutes after the user submits a request
and takes approximatively 30 s to complete, although the exact figures
depend on network connectivity and number of concurrent requests.

For the Sentinel-1 scenario, the dataset we consider consists of all
the dual polarization (VV + VH) IW Level 0 (RAW) products acquired
by the Sentinel-1A and Sentinel-1B sensors since the start of routine ob-
servations (Oct. 2014 for Sentinel-1A and Oct. 2016 for Sentinel-1B),
until January 2017. This amounts to 65,456 files with an average size
of 1422GB for a total of about 88.8 TB of data. The same information cor-
responds to about 284 TB of Level 1 (SLC) products with an average size
of 4550MB (see Table 5). For both kinds of product, the sizes we report
refer to the compressedfiles, as downloaded fromESA's Sentinels Scien-
tific Data Hub portal. As shown in Table 5, the volume of the Level 1
products is about 3.2 times larger than for the Level 0 ones.

The SARIPA processor takes 65 s to focus a Sentinel-1 IW Level 0
image. In the case of dual polarization data, twice this time, i.e., 130 s,
is required to focus thewhole Level 0 product. By applying these figures
to the data volumes in Table 5, about 2364 h (98.5 days) would be re-
quired to focus the entire dataset.

Concerning data access, in Table 6 we report the estimated times re-
quired to acquire the Level 0 and Level 1 products through ESA's Senti-
nels Scientific Data Hub for different downlink data rates. We consider
one download at a time (the Scientific Data Hub policies restrict concur-
rent downloads to amaximumof two per user), and neglect search, ser-
vice interruption, partial download resuming, and data validation times.
In our experience, the average download bandwidth is currently closer
to 1 MB/s than 10 MB/s or 100 MB/s.

5. Discussion

The near-real time performance of SARIPA, achieved at a relatively
low hardware cost (the target machine in Table 3 costs about 20,000
USD at the time of writing), makes several interesting options available
concerning Remote Sensing Big Data scenarios:

1) Data could be downloaded and stored in Level 0 format, the volume
of which is considerably smaller compared to the Level 1 case by a
factor 4 in the ENVISAT ASAR IM case (Table 5) and by a factor 3 in
the Sentinel-1 IW case (Table 6).

2) For data users and service providers, it would be a viable option to
carry out focusing on-the-fly, since the processing time is either neg-
ligible (in the ENVISAT ASAR IM case) or anyhow a small fraction of
the time currently required to generate SAR amplitude- or phase-
based value added products. This would eliminate the need of keep-
ing a permanent local archive of focused imagery. When required,
the raw images could be focused and kept in a temporary storage,
which is freed once the value-added products have been generated.

3) For the many thousands of data users, which access SAR products
through web-based services (OTF service for ENVISAT ASAR IM
Table 5
Sentinel-1 IW current product archive (Oct. 2014–Jan. 2017) over the whole Europe.

Num. of frames Size of one frame Total size

Level 0 (RAW) 65,456 1422 MB 88.8 TB
Level 1 (SLC) 4550 MB 284 TB
and Sentinels Scientific Data Hub for the Sentinel-1 IW case), the
time which is currently required to download the Level 1 products
is typically larger than that required to download the corresponding
Level 0 products and focus them (see Section 4.3 and Table 6). Also,
the time required for some archive management tasks (e.g., MD5
consistency checks and decompression) scales with file size, and is
therefore reduced in the case of Level 0 products.
From the performance point of view, when SARIPA-GPU is used to

focus the ENVISAT ASAR IM data, the bottleneck is no longer CPU-
bound, but I/O-bound. The time required to read/decode the raw data
file and write the focused image takes N50% of the wall-time required
to complete the process. This is due on one side to the speed of the fo-
cusing pipeline and on the other to the nature of the ASAR Level 0 for-
mat which, given a 150 MB raw data file input, generates about 1.1 GB
of SLC focused data after 8 s. I/O is less of a problem for Sentinel-1 IW,
since each pipeline worker process needs about 6 s to focus 250 MB of
input data (one raw data burst), and generates about the same size of
output (SLC focused) information. Further performance improvements
would require optimizing SARIPA not only in terms of computational
power, but also in terms of I/O bandwidth with regards to the available
storage hardware.

Another aspect which needs to be considered concerns the memory
requirements. Available GPU memory is typically a fraction of the sys-
tem one. For SAR image focusing and other algorithms using FFT calcu-
lations, this limitation needs to be considered, since available OpenCL
FFT routines currently require the number of samples to be aligned to
some specific value. For large images, such as the ones chosen as test-
cases, this might require the allocation of significantly bigger, zero-pad-
ded buffers. If these exceed the available device memory, images must
be split into partially overlapping sub-tiles, decreasing efficiency.

Regardless of performance considerations, one of the most valuable
results of the OpenCL approach presented in this paper is software por-
tability. Although tests have been performed on a high-end server ma-
chine equipped with multiple GPUs, the availability of CPU-only
OpenCL runtimes makes it possible to execute the same application on
computers with old or even without any GPU at all (such as many
HPC/cluster nodes or laptops). For example, SARIPA-CPU can focus a
Sentinel-1 IW raw file in b15 min on an off-the-shelf quad-core laptop
with 16 GB of memory.

6. Conclusions

The SARIPA project showed that focusing of ENVISAT ASAR IM and
Sentinel-1 IW raw data products can be achieved in real- and near-
real-time on one single machine, exploiting the proposed software ar-
chitecture and GPGPU via the OpenCL framework. This improved per-
formance opens a series of new interesting options to mitigate the Big
Data problems related to current and near-future SAR processing appli-
cations, enabling the user to maintain permanent local archives only of
Level 0 (raw) data products instead of bulkier Level 1 (focused) imag-
ery. Generating the latter from the Level 0 data using the approach pre-
sented in this paper is also more time efficient for typical data access
scenarios, compared to downloading the Level 1 data directly.

The target of SARIPAwas to optimize the performance using a single
machine, which could be a stand-alone workstation, as well as a single
node of a larger HPC/cluster system. One of the key advantages of our
approach is that it is not linked to a specific hardware device or vendor,
allowing the exploitation of available GPUs and/or CPUs without any
code duplication. Compared to more hardware- and vendor-specific
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solutions (e.g., CUDA), a small performance penalty can be expected but
the implementation of the guidelines discussed in Section 2, in particu-
lar concerning workload sizing and memory management, can signifi-
cantly reduce this drawback.

From an IT perspective, SAR processing is a complex problem,which
puts all the hardware resources under stress, due to its significantmem-
ory and computational requirements. The software architecture pre-
sented in this work implements a strategy to maximize hardware
resource exploitation by balancing the load placed on each system com-
ponent. As such, it could be further extended and adapted also to other
computationally intensive SAR processing algorithms, applied for in-
stance to interferometric and/or amplitude data stacks.
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