
Hardware-aware thread scheduling: the case of asymmetric multicore processors

Achille Peternier, Danilo Ansaloni, Daniele Bonetta, Cesare Pautasso and Walter Binder
University of Lugano (USI), Switzerland

first.last@usi.ch

Abstract—Modern processor architectures are increasingly
complex and heterogeneous, often requiring solutions tailored
to the specific characteristics of each processor model. In this
paper we address this problem by targeting the AMD Bulldozer
processor as case study for specific hardware-oriented perfor-
mance optimizations. The Bulldozer architecture features an
asymmetric simultaneous multithreading implementation with
shared floating point units (FPUs) and per-core arithmetic logic
units (ALUs). BulldOver, presented in this paper, improves
thread scheduling by exploiting this hardware characteristic
to increase performance of floating point-intensive workloads
on Linux-based operating systems. BulldOver is a user-space
monitoring tool that automatically identifies FPU-intensive
threads and schedules them in a more efficient way without
requiring any patches or modifications at the kernel level.
Our measurements using standard benchmark suites show that
speedups of up to 10% can be achieved by simply allowing
BulldOver to monitor applications, without any modification
of the workload.

Keywords-multicore; workload characterization; asymmetric
processors; performance

I. INTRODUCTION

Since the power wall [1] prevents hardware manufacturers
from increasing the processor’s clock frequency, modern
CPUs embed several cores to increase the computational
power through parallelism. Recent trends show that hard-
ware manufacturers are preferring heterogeneity over sym-
metric homogeneous designs. Indeed, current state-of-the-art
processors have very complex architectures featuring multi-
ple internal components, such as multiple cache levels shared
among different cores, Non-Uniform Memory Access [2]
(NUMA) controllers and hyperlinks, Simultaneous Multi-
Threading (SMT) support, or ad hoc dedicated units. As a
consequence, it is increasingly difficult for software devel-
opers to fully exploit the underlying computational power,
as optimal software configurations can vary according to the
hardware platform, to the application software architecture,
and to the type of workload.

The Operating System (OS) kernel and scheduler try to
optimize the performance of applications depending on the
available hardware resources. To this end, OS schedulers rely
on a limited set of performance indicators (such as CPU time
and memory usage) to drive their optimization strategies.
This is often not enough for multithreaded applications
running on modern systems, where the complexity and the
specific characteristics of the underlying hardware archi-

tecture require additional information to improve runtime
performance through efficient scheduling.

As a case study, in this paper we focus on one of these
modern architectures and we present a specific, hardware-
aware optimization tool based on (1) an automated workload
analysis technique relying on a specific set of performance
metrics that are currently not used by common OS sched-
ulers, and (2) a hardware-aware optimized scheduler per-
forming scheduling decisions based on hardware resource
usage monitoring. Our goal is to use a controller-based
approach to characterize the workload of multithreaded
and multi-process applications to improve the efficiency of
sharing of hardware resources and their utilization.

We focus on the AMD Bulldozer micro-architecture as it
represents a good example of a modern hardware platform
with specific characteristics that cannot easily be exploited
by non-hardware-aware approaches. In this context, one of
the peculiar characteristics of the Bulldozer architecture is
the design of Floating Point processing Units (FPUs) which
are shared between cores: two threads may contend for the
same FPU unit. This hardware layout can have a negative
impact on the performance of FPU-intensive workloads.

Our approach is named BulldOver (named after Bulldozer
Overseer), and corresponds to a Linux daemon that interacts
with the OS scheduler to improve thread scheduling of
floating point-intensive workloads on Bulldozer processors.
BulldOver runs in user-space and is based on performance
metrics commonly available without any modification of the
OS kernel and the monitored applications. Our approach
relies on hardware performance counters to detect which
threads make floating point-intensive computations, and on
improved thread scheduling by running the most FPU-
intensive threads on cores with a low level of contention
for FPUs. In this way, BulldOver provides a bottom-up op-
timization mechanism, based on automatic workload charac-
terization at runtime through hardware performance counters
and on hardware-aware allocation of resources. No further
intervention is required, neither in the workload nor at the
OS scheduler level. The tool is a system-wide user-mode
daemon collecting information and applying optimization
policies on the threads used by applications that have been
started via a specific command.

This paper is structured as follows. In Section II we give
an overview of our approach, followed by background on
the AMD Bulldozer micro-architecture and on hardware per-

(a) Inefficient scheduling: one thread per core without considering the
number of FPUs. Only 4 FPUs are used: each thread shares 2 FPUs with
another thread.

(b) Optimal scheduling: one thread per module. 8 FPUs used: each thread
uses 2 dedicated FPUs.

Figure 1: Inefficient vs optimal scheduling of 4 floating
point-intensive threads on an AMD Bulldozer processor.

formance counters (Section III). The design implementation
of BulldOver is described in Section IV. Our approach is
evaluated in Section V. Section VI discusses related work,
while Section VII concludes.

II. MOTIVATION AND APPROACH

Many scientific applications make heavy use of floating
point-intensive computations. Consider a scenario in which
a multithreaded application performs floating point-intensive
computations in a subset of its threads. A common OS
scheduler would assign FPU-intensive threads to the avail-
able cores for execution, as it would do for any other
application. The scheduler takes metrics such as the amount
of consumed CPU time into account. However, prevailing
schedulers included in most OS distributions do not con-
sider the way the executed workload is using the hardware
resources.

On modern architectures, it makes a significant difference
to schedule threads by taking into account the characteristics
of the underlying hardware. For simplicity, let’s assume that
a multithreaded application with 8 running threads has a
subset of 4 threads performing FPU-intensive operations.
The execution of such application on a eight-core Bulldozer
processor – where cores are in fact more sophisticated SMT
units assembled into modules of 2 cores – could potentially
result in an inefficient computing resources usage. If the
OS scheduler assigns the 4 floating point threads to 4 cores
belonging to two modules (see Figure 1a), the total number
of FPUs used will be 50% less than when the same 4 threads
are scheduled one per module (Figure 1b).

Our goal is to prevent such inefficient scheduling by
identifying and binding threads performing floating point

computations to specific cores. We rely on hardware per-
formance counters to measure the number of FPU-related
operations performed by each thread to dynamically identify
which threads would benefit from our approach.

Our dynamic approach does not require any code analysis,
annotation, or offline simulation. Since performance coun-
ters are a limited hardware resource (only a small number
of them can be used at the same time), OS schedulers
usually do not use them to perform a constant, system-wide
monitoring of all the running threads because user-space
applications would not be able to use additional counters
for their own needs.

Our approach, based on a centralized monitoring daemon
that applies optimization policies only to threads spawning
within user-specified processes, is executed at the user-
level, without interfering with the rest of the system. The
OS scheduler only receives hints about where to schedule
specific threads. All the threads started within selected
applications are regularly monitored to observe whether they
are generating FPU-related workload or not. According to
the number of floating point operations executed by each
thread, BulldOver sorts the most FPU-intensive threads (up
to the number of available Bulldozer modules) and binds
them on a per-module basis, instead of per-core. Whereas
other scheduling policies are based on other hardware re-
sources (e.g., NUMA nodes) and target other purposes (e.g.,
power efficiency), in this work we focus on a different
shared hardware resource (floating point processing units)
to improve performance.

III. BACKGROUND

A. AMD Bulldozer Processors

This section describes in details the internal architecture
of the AMD Bulldozer processor family1. The CPU embeds
multiple processing modules. Each module features a front-
end to fetch and decode instructions, caches (a larger L3
cache is shared by all the modules being part of the
same CPU), a branch prediction unit, out-of-order instruc-
tion schedulers, and integer and floating point processing
pipelines. Each module can run two threads simultaneously.
However, unlike IBM’s and Intel’s SMT implementations
(where two or more threads share all the resources of the
core), AMD integrated separate integer pipelines with their
own scheduler and retire unit.

As a consequence, a Bulldozer has two Arithmetic and
Logic Units (ALUs) per core, thus one thread can perform
a maximum of two integer operations in a single cycle
at the hardware level. FPUs are also present through two
dedicated units, but they are instantiated per module and
not per core (see Figure 2). Two threads performing floating
point operations scheduled on the same module will share 2

1http://www.amd.com/us/products/desktop/processors/amdfx/Pages/
amdfx.aspx

Figure 2: Architecture of a Bulldozer CPU with 2 modules
and 4 cores.

FPUs, while the same threads scheduled one per module will
use a total of 4 FPUs (2 FPUs for each thread exclusively).

The result is that Bulldozer modules behave more like a
dual-core system for integer-intensive tasks and more like
a single-core with SMT for floating point computations
(including SIMD operations provided by MMX/SSE and
similar extensions2).

Each module is also completed by an L2 cache shared
across the two cores (while L1 are instantiated per core and
a larger L3 is shared by all the cores/modules of one same
CPU).

B. Hardware Performance Counters

Performance counters (or performance events) are regis-
ters embedded into processors to keep track of hardware-
related events such as cache misses, number of CPU cycles,
retired instructions, etc. Counters are vendor and architecture
specific. Selected counters can be used for monitoring events
either on specific cores (per-core profiling) or on specific
threads (per-thread profiling). Since performance counters
are directly implemented at the processor level, their over-
head is very low. Counters are commonly used as efficient
instruments for empirical profiling [3], providing insight on
what is happening at the hardware level.

In our case, we use counters to dynamically determine
which threads (and in which percentage) execute floating
point instructions. Based on this information, we schedule
them on specific cores to make a better use of the Bulldozer
hardware architecture.

IV. BULLDOVER DESIGN

To verify and translate our ideas into practice, we ex-
tended [4] into BulldOver, a tool for Linux-based systems
written in C++ using hwloc3 for inspecting the underly-
ing hardware configuration, libpfm4 to access performance

2The 2 FPUs can also be used together to perform the new 256-bit
operations introduced through the Advanced Vector Extensions (AVX).

3http://www.open-mpi.org/projects/hwloc/
4http://perfmon2.sourceforge.net/

counters, and libmonitor5 for intercepting the creation and
termination of threads and processes. BulldOver is designed
with a client-server architecture (see Figure 3). The server
is a centralized daemon that receives the list of process
and thread IDs to monitor and optimize. The overhead
introduced by the monitoring infrastructure and the daemon
is very low (below 2%). In Figure 3, for instance, there are
three applications being monitored. Applications to monitor
(called Daemon Clients) are started just like any other
Linux process through the shell prompt by preceding the
application name with the bulldover command. This uses
libmonitor to register callbacks that are invoked each time
a new process or thread is created and terminated by the
application. The advantage is that every application can
be monitored without any change. Therefore, BulldOver is
totally transparent to the processes being monitored.

When a new thread is created, the Daemon Client notifies
the server about the new Process IDentifiers (PIDs) to
be tracked. In this way, the BulldOver server updates an
internal list containing all the PIDs related to each monitored
application. By knowing a thread’s PID, the server assigns
and monitors specific hardware performance counters for
that process instance. This allows to obtain a fine-grain
monitoring of the hardware performance events generated
by each process (and by each thread spawning within each
process, in the case of multithreaded applications).

The performance events are used to sort the list of the
monitored threads to identify which threads are stressing
more the FPU units. The control loop is closed by setting the
CPU-thread affinity mask of the top FPU-intensive threads
to bind them to the available modules. Non FPU- or less
FPU-intensive threads are scheduled by the OS scheduler
and are left untouched by BulldOver. The events monitored
by BulldOver are the following:

• PERF COUNT HW CPU CYCLES measures the
total number of CPU cycles consumed by a thread. The
reported value is incremented only during the thread
execution time and is not affected by thread migration.
The counter measures all the CPU cycles executed,
without categorizing them as being spent doing integer
or floating point tasks.

• CYCLES FPU EMPTY keeps track of the number
of CPU cycles the floating point units are not being
used.

Our assumption is that these two counters give an empirical
estimate of the floating point load that each thread is gen-
erating. By polling these values regularly (every second in
our experiments based on scientific workloads), BulldOver
can dynamically identify which threads have recently been
executing floating point-intensive workloads. Such threads

5https://outreach.scidac.gov/projects/libmonitor/

Application 1Application 1

Daemon
Client

Daemon
Client

Application 2Application 2

Daemon
Client

Daemon
Client

Application 3Application 3

Daemon
Client

Daemon
Client

Core-Affinity
setup

Sorting of
FPU-intensive

tasks

Receive
PID list

Monitor
Hardware

Performance
Events

OS Kernel APIOS Kernel API

OS SchedulerOS Scheduler Performance events
monitoring (libpfm)

Performance events
monitoring (libpfm)

Figure 3: Adaptive control loop implemented by the
BulldOver daemon.

will be privileged against threads not using the FPU units.
Like FPUs, L2 caches are also a resource shared by the

two cores of one same Bulldozer’s module. To differentiate
the speedup contribution given by improved FPU usage from
possible effects due to the L2 cache, we use an additional
performance counter (L2 CACHE MISSES) to measure the
number of cache misses happening at that level.

V. EVALUATION

A. Testing Environment

Tests are performed on a 4 CPU Dell PowerEdge M915
with 128 GB of RAM. Each CPU is an AMD 6282SE
2.6 GHz processor with 16 cores/8 modules. CPU frequency
scaling and Turbo Mode have been disabled.

This machine features 8 NUMA nodes with 2 nodes per
CPU6. To avoid latencies introduced by the non-uniform
architecture, and since our work is not aiming at NUMA-
aware scheduling, all the experiments have been performed
by using a single NUMA node and local memory (that is,
using the RAM directly connected to that CPU NUMA node,
without accessing the InterConnect). Under these settings,
the machine corresponds to a single CPU server with 8
cores/4 modules (as the one depicted in Figure 1) and 16 GB
of RAM. As a consequence, all the cores share the same L3
cache. The OS is Ubuntu Linux Server 64bit version 11.10.
C++ code is compiled using GCC version 4.6.1 for 64bit
architectures with -O3 optimizations. We used Oracle JDK
1.7.0 2 Hotspot Server VM 64bit.

Our evaluation approach is on realistic case studies and
relies on two established benchmark suites: Spec.CPU7 and

6The AMD Bulldozer architecture extends NUMA inside sockets, split-
ting each CPU into two additional NUMA nodes with intra-CPU latencies
lower than extra-CPU ones.

7http://www.spec.org/

Integer Floating point
0

10

20

30

40
38.8

0

38.9

33.7

E
ve

nt
s

[1
0
1
0

]

Figure 4: Counters microbenchmark showing empty FPU
cycles () and total CPU cycles ().

SciMark2.08. The Spec.CPU suite perfectly fits our needs
since its benchmarks are organized into two main categories:
integer and floating point. For our evaluation, we used
seven randomly choosen benchmarks of each group. Sci-
Mark2.0 performs a set of numeric intensive computations:
Fast-Fourier Transformation (FFT), Jacobi Successive Over-
Relaxation (SOR), Monte Carlo integration (MC), sparse
Matrix Multiply (MM), and dense LU matrix factorization
(LU), each with different levels of stress on the FPUs.

B. Workload characterization

To validate the usage of performance counters as an
instrument for workload characterization and to verify the
accuracy they provide in the identification of floating point
intensive code, we first executed two synthetic experiments
running two workloads: Integer and Floating point. For
the first experiment, a series of mathematical operations is
executed using only integer (in the Integer case) or floating
point variables (Floating point). The execution of the work-
loads is monitored through the CYCLES FPU EMPTY
and PERF COUNT HW CPU CYCLES counters previ-
ously described. Results are reported in Figure 4.

The CYCLES FPU EMPTY counter is effectively track-
ing the number of FPU-related operations. Each run of the
test lasts approximately half a minute: the Integer config-
uration, as expected, is confirmed as not consuming FPU
operations (that is, the FPU pipeline is empty for almost all
the CPU cycles consumed by the application).

By using the Floating point configuration, where only
floating point operations are executed, we observe how the
number of CYCLES FPU EMPTY events is close to zero.
As expected, the FPU pipeline is constantly filled with new
operations, since the code only contains FPU-related ones.

To confirm these results, we applied the same method-
ology to characterize the FPU workload generated by
Spec.CPU and SciMark2.0 benchmarks. Results are reported
in Figure 5 and Figure 6. We use these values to determine
a ratio given by Equation 1.

FPUusage = 1− EmptyFpuCycles

TotCpuCycles
(1)

8http://math.nist.gov/scimark2/

perl bzip2 gcc mcf gobmk hmmer h264ref
0

1

2

3

1.56

2.08

1.22
1.43

1.89
2.05

2.67

1.58

2.09

1.33 1.44

1.96
2.12

3.15

E
ve

nt
s

[1
0
1
2

]

integer

soplex bwaves milc povray gromacs tonto sphinx3
0

2

4

0.25 0.3
0.14 0.26

0.12

0.52
0.75

1.16

3.87

1.47

0.95

1.9
2.17

3.08

E
ve

nt
s

[1
0
1
2

]

floating point

Figure 5: Empty FPU cycles () and CPU cycles () count for each test of the Spec.CPU benchmark.

FFT SOR MC MM LU
0

1

2

0.22

0.02
0.15

0.01 0.05

1.59
1.51

1.13

2.07
1.93

E
ve

nt
s

[1
0
1
0

]

Figure 6: Empty FPU cycles () and CPU cycles () count for each test of the SciMark2.0 benchmark.

We use FPU usage to characterize the FPU workload
generated by each thread. Spec.CPU and SciMark2.0 FPU
usages are shown in Table I. Thanks to this metric, and
by regularly updating the values reported by performance
counters, BulldOver monitors which threads are performing
more FPU-intensive computations and forces the scheduler
to assign them to a module where no other FPU-intensive
threads are already running. This mechanism is at the basis
of the controller used by BulldOver, which is evaluated in
the next experiment. Table I is completed by an additional
index: the L2 cache miss ratio. This ratio is defined by the
number of CPU cycles divided by the number of L2 cache
misses. We use this value to have a raw approximation of
the level of contention that each benchmark put on the L2
cache. Since each module shares its FPUs and its L2 cache
between its two cores, later on we will use this ratio to
differentiate the performance contribution given by improved
FPU usage and from better locality. SciMark2.0 benchmarks
are very compact in terms of both memory consumption
and code length, efficiently fitting within CPU caches. As a
consequence, they generate very few cache misses (several
orders of magnitude less than Spec.CPU). For this reason,
we can ignore this aspect when running SciMark2.0 on our
testing hardware.

FPU usage − Spec.CPU integer
perl bzip2 gcc mcf gobmk hmmer h264ref
0.01 >0.01 0.08 >0.01 0.03 0.03 0.15

L2 cache miss ratio
0.12 0.5 0.84 1.62 0.08 0.07 0.07

FPU usage − Spec.CPU floating point
soplex bwaves milc povray gromacs tonto sphinx
0.79 0.92 0.91 0.72 0.94 0.76 0.75

L2 cache miss ratio
2.14 0.98 1.74 0.01 0.05 0.24 1.63

FPU usage − SciMark2.0
FFT SOR MC MM LU
0.86 0.99 0.87 0.99 0.97

Table I: FPU usage for the Spec.CPU and SciMark2.0
benchmarks as given by Equation 1. Spec.CPU benchmark
characterization is completed by L2 cache miss ratios.

C. Case Study

In this section, we evaluate the speedup achievable with
BulldOver when the system executes heavy numeric compu-
tations. When only a few threads are active, the OS is likely
to schedule them on different modules. However, when the
system utilization increases, threads executing floating point-
intensive workloads may be scheduled on cores that are part
of the same module. When using BulldOver, the system
monitors the FPU usage ratio of all running threads. Every
second, the most floating point intensive threads are bound

to different modules, decreasing the contention on shared
FPUs. In our testing environment using 8 cores/4 modules,
this implies that the scheduling of the first 4 FPU-intensive
threads is restricted to the first core of each module. The
following 4 threads are scheduled on the second core of
each module, while remaining threads have no restrictions.
To reduce unnecessary thread migrations, a simple caching
mechanism prevents threads staying within the first or sec-
ond group of 4 threads for more than a sampling cycle from
being rescheduled on a different core.

D. Multithreaded Spec.CPU

In this experiment we measure the wall-time required to
run 4 instances of a Spec.CPU integer and 4 instances of a
Spec.CPU floating point benchmarks. The idea is to auto-
matically let BulldOver analyze and decide how to schedule
them to improve the usage of FPUs. We include the results
obtained with two pairs of benchmarks (hmmer+povray and
mcf +sphinx3) that are particularly representative of two
recurrent behaviours that we observed (in all cases, including
other pairs, we have been able to identify the presence of
one or both of these behaviors with different weights).

We run the experiments using three different config-
urations: (1) an intentionally suboptimal scheduling ()
aggregating similar workloads to one same module (that is:
integer with integer, floating point with floating point); (2)
the optimized scheduling () putting heterogeneous threads
toghether (an integer thread with a floating point thread); and
(3) by not using BulldOver at all and letting the default OS
scheduler run (). Results are reported in the upper chart
of Figure 7.

Since one Bulldozer module shares the FPUs and the L2
cache among its two cores, we also report (in the bottom
chart of the same Figure) the number of L2 cache misses
generated during the experiment. This counter gives us an
additional information about which hardware resource (FPU
or L2 cache) is mostly responsible for the performance gain
or degradation.

Results. Each entry is computed as the mean value
after ten independent runs. Results are very stable for the
intentionally suboptimal baseline and BulldOver optimized
one (with a standard deviation below 1%). Things are
different concerning the default OS scheduling: since the
scheduler cannot characterize threads as integer- or FPU-
intensive, it considers them all the same and runs them on the
available cores. To improve locality and prevent performance
degradation due to unnecessary context switches, it tends
to keep one thread tied to a specific core until the overall
workload changes. In this way, in some cases the scheduler
manages to distribute integer and FPU threads in an optimal
way, while in other cases it assigns them more like our
intentionally suboptimal configuration.

Our optimal and suboptimal configurations somehow em-
ulate the range of possible performance that the sched-

hmmer + povray mcf + sphinx3
0.9

1

1.1

1.2

1 1

1.14

1.2

1.07

1.15

Sp
ee

du
p

hmmer + povray mcf + sphinx3
0.8

0.9

1
1 1

0.85

1

0.92

1

D
iff

er
en

ce
[%

]

L2 cache misses

Figure 7: Spec.CPU speedups (top) and cache miss differ-
ences (bottom) using an intentionally inefficient baseline
() versus using BulldOver to improve performance ()
or letting the default OS scheduler do the job ().

uler can (non-deterministically) achieve, while by using
BulldOver the optimal deployment is immediately identified
and setup. The BulldOver controller also embeds a caching
system that minimizes thread migrations: as long as one
thread is considered a top consumer of either the integer
or FPU group, it is permanently assigned to a specific core.

Results show that BulldOver is from 15% to 20% faster
than the suboptimal baseline and by 6% to 10% faster
(on average) than the default scheduler. BulldOver also
provides stable results among independent runs of the same
benchmark, while the default scheduler is more noisy.

At this point, we have shown that BulldOver is concretely
bringing some advantages to the system, but how can we
be sure that this speedup is really coming from improved
FPU usage and not from some other side-effects? According
to our measurements, speedups are coming from both. The
two pairs we selected are well representative of that: if we
compare the speedup and difference in cache misses of the
hmmer+povray pair, we can easily observe that they are
strictly correlated (a +14% speedup is followed by a similar
percent of reduction in the number of L2 cache misses). The
cache miss ratio of Table I gives us some insight: hmmer
has a rather low value (0.07) and povray even less (close to
0). This means that these two benchmarks are stressing the
L2 cache in a significantly different way. Now, since the L2
cache is shared by the two cores, when we put two hmmer
threads on the same module, there is more contention on the
L2 than when a hmmer thread is executed in combination
with a less cache-intensive thread such as povray.

The mcf +sphinx3 case is different. Here the cache misses
difference among the three configurations is below 0.1%
but we measure speedups of up to 20%. In fact, these two

benchmarks have a similar cache miss ratio of 1.62 and 1.63
respectively, thus are putting contention on the L2 cache
in a similar way. In this case, it is difficult to justify the
speedup by such a small delta in the cache miss count.
The performance gain is more likely introduced by a better
workload distribution over the available FPUs.

E. Multithreaded SciMark2.0

Thanks to Spec.CPU we have been able to setup a case
study by using two very distinct benchmarks running for
a long period of time without significant variations. By
switching to SciMark2.0, we want to use a more dynamic
scenario where all of its 5 benchmarks are doing FPU-
intensive computations with more or less stress on the FPUs.
Since SciMark2.0 runs inside a Java VM, BulldOver will
also keep track of corollary threads that are used by the JVM
itself for doing tasks such as realtime code optimization and
garbage collection, thus providing a more noisy and realistic
scenario.

Also, we modified the benchmark harness to start multiple
threads concurrently executing thread-local instances of the
benchmark, in order to have persistent threads that change
the benchmark they’re running over time (to really take
advantage from the dynamic monitoring of BulldOver). To
saturate the single NUMA node we are using, we use 8
benchmark threads, that is, a number of threads equal to the
number of available cores. While the five SciMark2.0 tests
are executed in random order, the harness guarantees that
each thread executes them all. After each thread completes
the execution, we measure the cumulative score of each
benchmark test. Unlike Spec.CPU, SciMark2.0 benchmarks
generate very few cache misses: for this reason, we do not
show a similar chart for this test.

Results. Figure 8 reports the results of our evaluation, nor-
malized to the baseline (i.e., default OS scheduling without
BulldOver). Each data point corresponds to the average of 5
measurements. Each measurement is preceded by a warm-
up run to attenuate noise from class-loading and just-in-time
compilation. In all considered cases, the standard deviation is
below 2%. When each benchmark thread executes the entire
SciMark2.0 suite (Full SciMark2.0), BulldOver effectively
improves runtime performance, incrementing the benchmark
score of 8%. Figure 8 reports the results of the execution
of a subset of the workloads, that is, FFT and MM (FFT +
MM). According to Table I, the FPU usage made by those
workloads is the most different (99% and 86% respectively).
In this case, the use of BulldOver increases the score of 11%
since the system is less saturated than by running the full
suite (with more threads with higher FPU usage) and takes
an additional boost of 3% from the improved scheduling of
threads with different stress on the FPUs.

Full SciMark2.0 FFT + MM
0.9

1

1.1

1 1

1.08

1.11

Sp
ee

du
p

Figure 8: SciMark2.0 speedups using default OS scheduling
() versus using BulldOver to improve performance ().

VI. RELATED WORK

Hardware performance counters represent a widely used
instrument for performing realtime profiling of different
computational workloads. Counters have been used in sev-
eral different domains, including memory optimization [5],
hardware characteristics identification [6], application char-
acterization [7], security [8], data-race detection [9], etc.

The idea of exploiting counters for the development
of hardware-aware scheduling policies has been already
discussed in related research works: in [10], for instance,
hardware performance counters are exploited to drive the
scheduling of multiple independent threads (i.e., not be-
longing to the same application) to reduce the power
consumption on multicore machines. This and similar ap-
proaches [11], [12], [13] demonstrate how the quality of the
low-level counter measurements is of great benefit for per-
formance optimization. In [14] the authors use cache-related
performance data to enforce threads sharing a common data
structure to share a common last-level cache. Similarly,
in [15] the authors present a NUMA-aware scheduler based
on performance counters. The scheduler monitors memory-
related counters and infers which threads are sharing data on
a common NUMA node. Therefore, the scheduler can easily
map threads sharing the same resource to the most efficient
NUMA node. The approach is specific to the domain of
OpenMP parallel applications, while a generic approach
is presented in [16], where a NUMA-aware scheduler has
been introduced. The authors also show that schedulers not
aware of the hardware architecture (called UMA systems
in the paper) could even hurt performance. A similar non-
NUMA approach has been presented in [17]. All these
approaches show how correct scheduling policies improve
performance in the case of hardware resources contention.
In our contribution we also demonstrated the impact of
physical resources contention, showing how not only caches
and memory contention should be carefully considered for
thread scheduling, but also the contention of internal CPU
modules such as FPUs. An approach with similar goals is
discussed in [18], where the benefits of scheduling multiple
threads on an Intel-based HyperThreading-enabled multicore
CPU are presented.

Finally, a discussion of the accuracy and the benefits of

different counters measurement libraries and approaches is
discussed in [19] and in [20].

VII. CONCLUSION

Modern micro-architectures are increasingly complex and
heterogeneous. In this paper we present a case study for per-
formance optimizations targeting shared hardware resources
such as the ones found on the AMD Bulldozer processor.
The Bulldozer architecture features an asymmetric SMT
implementation with FPUs shared by pairs of cores. In
our experiments we show that a scheduling not aware of
this characteristic incurs a significant performance penalty.
To address this limitation, we propose an approach based
on monitoring, workload characterization and optimization
assembled into BulldOver, a non-intrusive Linux-based tool
running in user-space that allows to automatically and dy-
namically identify which threads are FPU-intensive and to
schedule them in a more efficient way. Our measurements
using standard benchmarks show that speedups of about
10% and more stable performance can be achieved by simply
running BulldOver with the desired applications, without the
need of any static analysis and source-code modification.

Acknowledgment: The research presented in this paper has
been supported by the Swiss National Science Foundation (project
CRSII2 136225) and by the European Commission (Seventh
Framework Programme grant 287746).

REFERENCES

[1] D. Patterson, “The trouble with multi-core,” IEEE Spectr.,
vol. 47, no. 7, pp. 28–32, 2010.

[2] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2008.

[3] J. Du, N. Sehrawat, and W. Zwaenepoel, “Performance pro-
filing of virtual machines,” in Proc. of the 7th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Environments
(VEE), 2011, pp. 3–14.

[4] A. Peternier, D. Bonetta, W. Binder, and C. Pautasso, “Over-
seer: Low-level hardware monitoring and management for
java,” in Proc. of the 9th international conference on the
Principles and Practice of Programming in Java (PPPJ
2011), Denmark, 2011, pp. 143–146.

[5] M. M. Tikir and J. K. Hollingsworth, “Using hardware
counters to automatically improve memory performance,” in
Proc. of the ACM/IEEE conference on Supercomputing (SC),
2004, p. 46.

[6] J. Demme and S. Sethumadhavan, “Rapid identification of ar-
chitectural bottlenecks via precise event counting,” SIGARCH
Comput. Archit. News, vol. 39, no. 3, pp. 353–364, 2011.

[7] Y. Luo and K. W. Cameron, “Instruction-level characteri-
zation of scientific computing applications using hardware
performance counters (wwc),” in Proc. of the Workload
Characterization: Methodology and Case Studies, 1998, pp.
125–131.

[8] C. Malone, M. Zahran, and R. Karri, “Are hardware perfor-
mance counters a cost effective way for integrity checking of
programs,” in Proc. of the 6th ACM workshop on Scalable
Trusted Computing (STC), 2011, pp. 71–76.

[9] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin,
“Demand-driven software race detection using hardware per-
formance counters,” in Proc. of the 38th annual International
Symposium on Computer Architecture (ISCA), 2011, pp. 165–
176.

[10] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power
estimation and thread scheduling via performance counters,”
SIGARCH Comput. Archit. News, vol. 37, pp. 46–55, 2009.

[11] S. Hsin-Ching, S. Bor-Yeh, Y. Wuu, and L. Jenq-Kuen,
“Migrating java threads with fuzzy control on asymmetric
multicore systems for better energy delay product,” in Proc.
of the International Conference on Computing and Security
(ICCS), 2011, pp. 1–12.

[12] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and
E. Ayguade, “Decomposable and responsive power models for
multicore processors using performance counters,” in Proc. of
the 24th ACM International Conference on Supercomputing
(ICS), 2010, pp. 147–158.

[13] M. Y. Lim, A. Porterfield, and R. Fowler, “Softpower: fine-
grain power estimations using performance counters,” in
Proc. of the 19th ACM International Symposium on High
Performance Distributed Computing (HPDC), 2010, pp. 308–
311.

[14] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “On-
line cache modeling for commodity multicore processors,”
SIGOPS Oper. Syst. Rev., vol. 44, pp. 19–29, 2010.

[15] C. Su, D. Li, D. Nikolopoulos, M. Grove, K. W. Cameron,
and B. R. de Supinski, “Critical path-based thread placement
for numa systems,” in Proc. of the 2nd international workshop
on Performance Modeling, Benchmarking and Simulation of
high performance computing systems (PMBS), 2011, pp. 19–
20.

[16] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A
case for numa-aware contention management on multicore
systems,” in Proc. of the USENIX Annual Technical Confer-
ence (USENIXATC), 2011, pp. 1–15.

[17] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-
aware scheduling on multicore systems,” ACM Trans. Com-
put. Syst., vol. 28, pp. 8:1–8:45, 2010.

[18] J. Nakajima and V. Pallipadi, “Enhancements for hyper-
threading technology in the operating system: seeking the
optimal scheduling,” in Proc. of the 2nd Workshop on In-
dustrial Experiences with Systems Software (WIESS), 2002,
pp. 3–3.

[19] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of
performance counter measurements,” in Proc. of the Interna-
tional Symposium on Performance Analysis of Systems and
Software (ISPASS), 2009, pp. 23–32.

[20] S. Eranian, “What can performance counters do for mem-
ory subsystem analysis?” in Proc. of the ACM SIGPLAN
workshop on Memory Systems Performance and Correctness
(MSPC), 2008, pp. 26–30.

