
Improving Execution Unit Occupancy on SMT-based
Processors through Hardware-aware Thread Scheduling

Achille Peternier, Danilo Ansaloni, Daniele Bonetta, Cesare Pautasso, and
Walter Binder1

University of Lugano (USI)
Via G. Buffi 13, 6904 Lugano, Switzerland

email: first.last@usi.ch

Abstract

Modern processor architectures are increasingly complex and heterogeneous,
often requiring software solutions tailored to the specific hardware charac-
teristics of each processor model. In this article we address this problem
by targeting two processors featuring Simultaneous Multi-Threading (SMT)
to improve the occupancy of their internal execution units through a sus-
tained stream of instructions coming from more than one thread. We target
the AMD Bulldozer and IBM POWER7 processors as case studies for spe-
cific hardware-oriented performance optimizations that increase the variety
of instructions sent to each core to maximize the occupancy of all its exe-
cution units. WorkOver, presented in this article, improves thread schedul-
ing by increasing the performance of floating point-intensive workloads on
Linux-based operating systems. WorkOver is a user-space monitoring tool
that automatically identifies FPU-intensive threads and schedules them in
a more efficient way without requiring any patches or modifications at the
kernel level. Our measurements using standard benchmark suites show that
speedups of up to 20% can be achieved by simply allowing WorkOver to
monitor applications and schedule their threads, without any modification of
the workload.

Keywords: multicore, simultaneous multithreading, workload profiling,
performance, thread scheduling

1corresponding author is Achille Peternier, email: achille.peternier@usi.ch, phone:

+41 (0)76 460 38 37

Preprint submitted to Future Generation Computer Systems May 16, 2013

1. Introduction

Since the power wall [1] prevents hardware manufacturers from increasing
the processor’s clock frequency, modern CPUs embed several cores to increase
the computational power through parallelism. Recent trends show that hard-
ware manufacturers are preferring asymmetry and heterogeneity over sym-
metric and homogeneous designs. Indeed, current state-of-the-art processors
have very complex architectures featuring multiple internal components, such
as multiple cache levels shared among different cores, Non-Uniform Memory
Access (NUMA) [2] controllers and hyperlinks, Simultaneous MultiThread-
ing (SMT) support with several Processing Units (PUs) per core, or ad hoc
dedicated units. As a consequence, it is increasingly difficult for software de-
velopers to fully exploit the underlying hardware’s computational power, as
optimal software configurations can vary according to the hardware platform,
to the application software architecture, and to the type of workload.

The Operating System (OS) kernel and scheduler try to optimize the per-
formance of applications depending on the available hardware resources. To
this end, OS schedulers rely on a limited set of performance indicators (such
as the number of cores, CPU time, and memory usage) to drive their opti-
mization strategies. This is often not enough for multithreaded applications
running on modern systems, where the complexity and the specific charac-
teristics of the underlying hardware architecture require to use additional
information to improve runtime performance through efficient scheduling.

As a case study, in this article we focus on two of these modern archi-
tectures and we present a specific, hardware-aware optimization tool based
on (1) an automated workload analysis technique relying on a specific set
of performance metrics that are currently not used by common OS sched-
ulers, and (2) a hardware-aware optimized scheduler performing scheduling
decisions based on hardware resource usage monitoring. Our goal is to use
a controller-based approach to characterize the workload of multithreaded
and multi-process applications to improve the efficiency of how they share
heterogeneous resources.

We focus on two modern micro-architectures that implement very dif-
ferent SMT solutions: the AMD Bulldozer and IBM POWER7 processors.
These architectures are good representatives of modern hardware platforms
with specific characteristics that cannot easily be exploited by non-hardware-

2

aware approaches. In this context, one of the peculiar characteristics of the
Bulldozer architecture is the design of an asymmetric SMT implementation
between integer and floating point units, where Floating Point processing
Units (FPUs) are shared by two PUs within one same core: two threads
may contend for the same FPU units (while integer units are available on a
per-PU basis). The IBM POWER7 architecture is based on a more aggres-
sive implementation of SMT, where the instructions coming from up to four
threads can be scheduled simultaneously to improve the occupancy of the
available execution units on each core. Since each core features two integer
and four floating point units, only a proper scheduling of integer- and floating
point-intensive threads can take advantage of this improved SMT, otherwise
these hardware layouts can have a negative impact on the performance of
FPU-intensive workloads.

Our approach is named WorkOver (after Workload Overseer) and corre-
sponds to a Linux daemon that interacts with the OS scheduler to improve
thread scheduling of floating point-intensive workloads on SMT processors by
taking into account the way hardware execution units are organized into cores
and PUs. WorkOver runs in user-space and is based on performance met-
rics commonly available without any modification of the OS kernel and the
monitored applications. Our workload profiling approach relies on hardware
performance counters to detect which threads make floating point-intensive
computations. Our performance optimization is based on improved thread
scheduling by pinning the most FPU-intensive threads to PUs of different
cores to reduce contention on shared execution units. In this way, WorkOver
provides a transparent bottom-up optimization mechanism, based on (1) au-
tomatic workload profiling at runtime through performance counters and
(2) hardware-aware dynamic allocation of resources. No further interven-
tion is required, neither to modify the running application (the workload)
nor to change the OS scheduler. The tool is a system-wide user-mode dae-
mon collecting information and applying optimization policies on the threads
spawned by applications (processes) that have been started with a special
command.

This article extends our work presented in [3] by generalizing the approach
from a specific CPU model to generic SMT processors and by using two com-
pletely different hardware architectures and OSs to validate our generalized
approach.

3

2. Motivation and Approach

Many scientific applications make heavy use of floating point-intensive
computations. Consider a scenario in which a multithreaded application
performs floating point-intensive computations with variable intensity in all
or a subset of its threads. A common OS scheduler would assign FPU-
intensive threads to the available SMT units for execution, as it would do
for any other application. The scheduler takes metrics such as CPU time
consumption into account. However, prevailing schedulers included in most
OS distributions do not consider the way the executed workload is using the
hardware resources.

On modern architectures, it makes a significant difference to schedule
threads by taking into account the characteristics of the underlying hardware.
For simplicity, let’s assume that a multithreaded application with 8 running
threads has a subset of 4 threads performing FPU-intensive operations. The
execution of such application on an AMD Bulldozer four-core processor with
with 2 PUs on each core (thus seen as a processor with 8 PUs in total) could
potentially result in an inefficient use of computing resources. If the OS
scheduler scatters the 4 floating point threads to 4 PUs used by two cores
(see Figure 1a), the total number of FPUs used will be 50% less than when
the same 4 threads are scheduled one per core (Figure 1b).

This scenario can be even more detrimental to performance when it hap-
pens on a IBM POWER7 four-core processor with 4 PUs on each core: in
such a case (see Figure 2a), only the FPUs of a single core would be used
by the four threads, while FPUs belonging to other cores would idle unless
a better scheduling (such as the one depicted in Figure 2b) is applied.

Our goal is to prevent such inefficient scheduling by identifying and bind-
ing threads performing floating point computations to specific PUs. We rely
on hardware performance counters to measure the number of FPU-related
operations performed by each thread. Based on this information we identify
at runtime which threads would benefit from our approach, in order to have
an interleaved distribution of FPU- and non-FPU-intensive threads over the
available PUs. Thanks to the regular monitoring, our solution is able to
change thread scheduling on-the-fly, according to the previous measurement
time lapse. In this way, threads that change their integer/FPU usage inten-
sity over time are rescheduled in a more efficient way, e.g., when a thread
pool reuses the same threads for doing different tasks or when one thread’s
FPU usage varies.

4

(a) Inefficient allocation: one thread per PUs without con-

sidering the number of FPUs. Only 4 FPUs are used: each

thread shares 2 FPUs with another thread.

(b) Optimal allocation: one FPU-intensive thread per core.

All the 8 available FPUs are used: each thread uses 2 dedi-

cated FPUs.

Figure 1: Inefficient vs optimal scattering of 4 floating point-intensive threads
on a AMD Bulldozer processor.

5

(a) Inefficient allocation: one thread per PUs without consid-

ering the number of FPUs. Only 4 FPUs out of 16 are being

used by the four threads, generating high contetion.

(b) Optimal allocation: one thread per core. 16 FPUs used:

each thread uses 4 dedicated FPUs.

Figure 2: Inefficient vs optimal scattering of 4 floating point-intensive threads
on a IBM POWER7 processor.

6

Our dynamic approach does not require any code analysis, annotation,
or offline simulation. Since performance counters are a limited hardware
resource (only a small number of them can be used at the same time), they
are usually not used by OS schedulers to perform continuous, system-wide
monitoring of all the running threads because user-space applications would
not be able to use additional counters for their own needs. For example, if an
OS scheduler would reserve two performance counters out of the maximum
of six that can be simultaneously activated (both on the AMD Bulldozer and
IBM POWER7 processors) to monitor all the running threads for its needs,
only four counters would be left for usage by other applications measuring
different events on the same threads. Performance counters are a precious
and limited resource, since the maximum number of simultaneously usable
counters is much lower than the total number of available performance events
(e.g., 82 on AMD Bulldozer and 537 on IBM POWER7).

Our approach, based on a centralized monitoring daemon that applies op-
timization policies only to threads spawned within user-specified processes,
is executed at the user-level, without interfering with the rest of the sys-
tem. The OS scheduler only receives hints about where to schedule specific
threads. All the threads started within selected applications are regularly
monitored to observe whether they are generating FPU-related workload or
not, so that improved FPU-occupancy scheduling can change and be refined
at runtime. According to the number of floating point operations executed
by each thread, WorkOver classifies the most FPU-intensive threads (up
to maximum number automatically determined in function of the available
FPUs, cores and the way they are distributed) and binds them to PUs by
interleaving the floating point intensive ones with the integer (or less float-
ing point intensive) ones, instead of randomly distributing them across all
PUs (as default schedulers normally do). Whereas other scheduling policies
are based on other well researched hardware resources (e.g., NUMA memory
layout and shared caches [4, 5, 6]) and target other purposes (e.g., power
efficiency [7, 8, 9, 10]), in this work we focus on a different shared hardware
resource (floating point processing units) to improve performance.

7

3. Background

3.1. AMD Bulldozer Processors

This section describes in detail the internal architecture of the AMD
Bulldozer processor family2.

The processor embeds multiple cores (referred to as processing modules
in the AMD documentation). Each core features a front-end to fetch and
decode instructions, caches (a larger L3 cache is shared by all the modules
being part of the same CPU), a branch prediction unit, out-of-order instruc-
tion schedulers, and integer and floating point processing pipelines. Each
core has 2 PUs (referred to as cores in the AMD documentation) and can
run two threads simultaneously. However, unlike IBM’s and Intel’s SMT
implementations (where two or more threads share all the resources of the
core), AMD integrated separate integer pipelines with their own scheduler
and retire units.

As a consequence, a Bulldozer has two Arithmetic and Logic Units (ALUs)
per PU, thus one thread can perform a maximum of two integer operations in
a single cycle at the hardware level. FPUs are also present through two dedi-
cated units, but they are instantiated per core and not per PU (see Figure 3).
Two threads performing floating point operations scheduled on the two PUs
of the same core will share 2 FPUs, while the same threads scheduled on PUs
belonging to two different cores will use a total of 4 FPUs (2 FPUs for each
thread exclusively).

The result is that Bulldozer PUs behave more like a dual-core system
for integer-intensive tasks and more like a single-core with SMT for floating
point computations (including SIMD operations provided by MMX/SSE and
similar extensions3).

Each core is also completed by an L2 cache shared across its two PUs
(while L1 are instantiated per PU and a larger L3 is shared by all the
PUs/cores of one same processor).

2http://www.amd.com/us/products/desktop/processors/amdfx/Pages/amdfx.
aspx

3The 2 FPUs can also be used together to perform the new 256-bit operations intro-

duced through the Advanced Vector Extensions (AVX).

8

Figure 3: Architecture of a AMD Bulldozer processor with 8 cores and 16
PUs.

3.2. IBM POWER7 Processors

The POWER7 processor (see Figure 4) is composed of several cores and
is mainly designed on the principle of out-of-order instruction execution to
improve the occupancy of the available internal units. Each core features
twelve execution units as 2 FiXed point Units (FXUs), 2 load store units, 4
double precision floating point units, 1 vector unit, 1 branch unit, 1 condition
register unit, and 1 decimal floating point unit. In order to feed all the
available execution units with a sufficient stream of instructions, POWER7
processors introduced a new SMT mode with 4 PUs capable of executing
up to four instruction threads simultaneously on a single core. POWER7
processors can be configured to run in SMT1 (with 1 PU per core), SMT2 (2
PUs per core), and SMT4 (4 PUs per core). The SMT4 mode improves the
POWER7 processor’s throughput by increasing the execution-unit occupancy
efficiency of each core [11, 12].

The POWER7 processor architecture of each core is completed by two L1
(instruction and data) caches of 32 kB each, 256 kB of L2 cache, and 4 MB of
L3 cache. L3 cache can be shared among different cores of one same processor
according to automatically detected access patterns: a specific core’s L3 cache
region can be accessed by other cores by paying a penalty in the latency.

3.3. Hardware Performance Counters

Performance counters (or performance events) are registers embedded
into processors to keep track of hardware-related events such as cache misses,
number of CPU cycles, retired instructions, etc. Counters are vendor and

9

Figure 4: Architecture of a IBM POWER7 processor with 8 cores and 32
PUs.

hardware-architecture specific. Selected counters can be used for monitoring
events either on specific cores (per-core profiling) or on specific threads (per-
thread profiling). Since performance counters are directly implemented at
the processor level, their overhead is very low. Counters are commonly used
as efficient instruments for empirical profiling [13], providing insight on what
is happening at the hardware level.

In our case, we use counters for workload profiling to dynamically de-
termine which threads (and in which percentage) execute floating point in-
structions. Based on this information, we schedule them on specific PUs
to balance the occupancy of the execution units available on the two target
hardware architectures.

4. WorkOver Design

4.1. Requirements and Dependencies

To verify and translate our ideas into practice, we extended our Java
low-level monitoring library4 (described in [14]) into WorkOver, a tool for
Linux-based systems written in C++. WorkOver uses hwloc5 for inspecting
the underlying hardware configuration and for dynamically extracting infor-
mation on its topology to enable automatic hardware-awareness. Additional
information not provided by hwloc about the number and the way execution
units are distributed among cores and PUs is read from processor-architecture

4http://sosoa.inf.unisi.ch/overseer
5http://www.open-mpi.org/projects/hwloc/

10

specific configuration files that are loaded according to the detected processor
family. These configuration files also include the performance counter strings
relative to each architecture to improve portability of WorkOver to other
platforms. Hardware performance counters are managed through libpfm6,
which is a light-weight library for gathering performance events. We used
libmonitor7 for intercepting the creation and termination of threads and
processes. All the multithreading mechanisms supported by libmonitor
are then supported by WorkOver, which comprise pthreads, signals, dlopen,
OpenMP and MPI.

4.2. Software Architecture

WorkOver is designed with a client-server architecture (see Figure 5). The
server is a centralized daemon that receives the list of process and thread
IDs to monitor and optimize. The overhead introduced by the monitoring
infrastructure and the daemon is very low (below 2%). In Figure 5, for in-
stance, there are three applications being monitored. These applications are
started just like any other Linux process through the shell prompt by pre-
ceding the application name with the workover command (e.g., shell:/$
workover executable). This uses libmonitor to register callbacks that
are invoked each time a new process or thread is created and terminated
by the application. To do so, libmonitor overrides functions such as main,
pthread create, fork, dlopen, MPI Init, OS signals, etc. (see [15]). The
advantage is that applications built using the same multithreading mecha-
nisms supported by libmonitor can be monitored without any change nor
recompilation. Therefore, WorkOver is totally transparent to the application
being monitored through its Daemon Client.

When a new thread is created, the Daemon Client notifies the server
about the new Process IDentifiers (PIDs) to be tracked. In this way, the
WorkOver server updates an internal list containing all the PIDs related
to each monitored application. By knowing a thread’s PID, the server as-
signs and monitors specific hardware performance counters for that thread
instance. This allows to obtain a fine-grain monitoring of the hardware per-
formance events generated by each process (and by each thread spawned
within each process, in the case of multithreaded applications).

6http://perfmon2.sourceforge.net/
7https://outreach.scidac.gov/projects/libmonitor/

11

The performance events are used to sort the list of the monitored threads
to identify which threads are putting more stress on the FPUs among the
most active ones (identified by the number of CPU cycles they consumed
during the previous sampling period). The control loop is closed by setting
the CPU-thread affinity mask of the top FPU-intensive threads to bind them
to the available PUs in a way that:

1. prevents excessive stress on some core by making sure that top FPU-
consumers are scheduled on PUs belonging to different cores;

2. avoids a single category of threads (such as integer- or FPU-consumers
only) from running on one same core, thus not using all the execution units
available;

3. reduces thread migrations through a caching mechanism that schedules
the same thread to the same PU as long as possible (thus reducing cache
refilling due to unnecessary PU changes). WorkOver keeps a cumulative PU
usage history for each PID received: when the top-consumers list is updated,
threads with a PID that was already part of this group are re-scheduled to
the same PU.

Non FPU- and less FPU-intensive threads that are not among the top-
consumers are scheduled by the OS scheduler and are left untouched by
WorkOver.

4.3. Considered Performance Events

The hardware performance events monitored by WorkOver to perform the
workload profiling depend on the underlying hardware architecture and are
thus specific to either the AMD Bulldozer or the IBM POWER7 processor.

On the AMD Bulldozer we used:

• PERF COUNT HW CPU CYCLES to measure the total num-
ber of CPU cycles consumed by a thread. The reported value is incre-
mented only during the thread execution time and is not affected by
thread migration. This counter measures all the CPU cycles executed,
without categorizing them as being spent doing integer or floating point
tasks.

• CYCLES FPU EMPTY keeps track of the number of CPU cycles
the floating point operation scheduler is empty. Since the floating

12

point scheduler also stores FP-instructions using extended function-
alities (such as MMX/SSE/AVX), this counter works independently of
the extension set being used8.

On the IBM POWER7 we considered:

• PM CYC, which is the IBM version of the PERF COUNT HW CPU CYCLES
counter previously described. Its semantics is identical.

• PM FLOP counts the number of floating point operations that have
been generated during a thread’s execution time.

Our assumption (verified hereafter in Section 5.2) is that these counters
give an empirical estimate of the floating point load that each thread is gen-
erating. By polling these values regularly (i.e., every second9 in our exper-
iments based on scientific workloads), WorkOver can dynamically identify
which threads have recently been executing floating point-intensive work-
loads. We assume that a thread showing an intensive FPU-related activity
during the monitoring sampling phase will probably continue during the next
iteration, and thus will be scheduled in a different way against threads not
using the FPU units. Since we regularly update the workload profiling, when
a thread changes its behavior, we can dynamically change its scheduling as
well. This option, for example, is not permitted by other approaches relying
on a priori thread pinning.

FPUs are not the only hardware resource shared by two or more PUs. In
particular, shared L2 caches available in both the AMD Bulldozer and IBM
POWER7 processor cores can have critical effects on performance. To differ-
entiate the speedup contribution given by improved FPU usage from possi-
ble effects due to the L2 cache, we use two additional performance counters

8This includes 256-bit AVX instructions, where both FPUs are coupled to perform

operations. Since FPUs are used after being scheduled by the floating point scheduler,

threads abundantly using 256-bit AVX instructions will tend to fill the FP-scheduler more

often and will be identified as intensive FPU consumers.
9Since our evaluation is based on scientific workloads requiring up to several minutes

to complete, we found that 1 sec is a reasonable monitoring sampling frequency. Since

the total overhead of WorkOver is very low, an higher sampling frequency would only

reduce the accuracy of the optimizations without any payback. On the other hand, short-

living and fast-changing threads would benefit from a faster refresh rate. The sampling

frequency interval is also part of the WorkOver configuration files and can be customized

at will according to the context.

13

����������	
�
����������	
�

����	

���	�

����	

���	�

����������	
�
����������	
�

����	

���	�

����	

���	�

����������	
�
����������	
�

����	

���	�

����	

���	�

��������	���

����

�����	�
��

�����	�	���

�����

����

� �
����

!�	����

"��#$��

�������	�

%�	��

&�
'�	�
��
&�
'�	�
��

&�
��(#���
&�
��(#��� �������	�
�	��

��	�����	�
)��*���+

�������	�
�	��

��	�����	�
)��*���+

Figure 5: Adaptive control loop implemented by the WorkOver daemon.

(L2 CACHE MISSES on AMD Bulldozer and PM L2 LDST MISS on IBM
POWER7) to measure the number of cache misses. We only use this informa-
tion during our evaluation to observe the impact of the WorkOver scheduling
at that level: WorkOver does not use these counters. When a significant
speedup is detected with almost no variation in the total number of cache
misses, it is reasonable to suppose that such a speedup is not introduced by
an accidentally improved cache efficiency produced by WorkOver.

5. Evaluation

5.1. Testing Environment

Experiments are performed on two different machines. The first one
(henceforth referred to as AMD-Bull) is a 4 CPU Dell PowerEdge M915 with
128 GB of RAM. Each CPU is an AMD 6282SE 2.6 GHz processor with 8
cores including 2 PUs each, for a total of 16 PUs10. This machine features 8
NUMA nodes with 2 nodes per CPU11. To avoid latencies introduced by the

10Using the AMD terminology, this corresponds to a CPU with 8 modules and 16 cores.
11The AMD Bulldozer architecture extends NUMA inside sockets, splitting each CPU

into two additional NUMA nodes with intra-CPU latencies lower than extra-CPU ones.

14

non-uniform architecture, and since our work is not aiming at NUMA-aware
scheduling (a topic already well covered by research), all the experiments
have been performed by using a single NUMA node and local memory (that
is, using the RAM directly connected to that CPU NUMA node, without
accessing the InterConnect). Under these settings, the machine corresponds
to a single CPU server with 4 cores/8 PUs (as the one depicted in Figure 1)
and 16 GB of RAM. As a consequence, all the cores share the same L3 cache.

The second machine (henceforth referred to as IBM-P7) is an IBM 4
CPU P755 with 128 GB of RAM. Each CPU is an IBM POWER7 3.3 GHz
processor with 8 cores. Each core can activate and use up to 4 PUs (the
activation is statically done by means of a command-line tool). This machine
features 4 NUMA nodes (one per CPU). Similarly to AMD-Bull, all the
experiments have been performed by using a single NUMA node and local
memory. Under these settings, IBM-P7 corresponds to a single CPU server
with 8 cores and a maximum total of 32 PUs. In this case, too, all the cores
share the same L3 cache.

Where available, energy saving, dynamic CPU frequency scaling, and
Turbo mode have been disabled for improved experiment repeatability.

The OS used is Ubuntu Linux Server 64bit version 11.10 on AMD-Bull
and RedHat Enterprise Linux 64bit for PowerPC version 6.3 on IBM-P7.
C++ code is compiled using GCC version 4.6.1 on AMD-Bull and version
4.7.3 (via Advance Toolchain 6.0-1) on IBM-P7. We used Java through the
Oracle JDK 1.7.0 2 Hotspot Server VM on AMD-Bull and IBM J9 1.7.0 SR3
on IBM-P7.

Our evaluation approach is on realistic case studies and relies on two
established benchmark suites: Spec.CPU12 and SciMark2.013. The Spec.CPU
suite perfectly fits our needs since its benchmarks are organized into two main
categories: integer and floating point. For our evaluation, we used seven
randomly chosen benchmarks of each group. SciMark2.0 performs a set of
numeric intensive computations: Fast-Fourier Transformation (FFT), Jacobi
Successive Over-Relaxation (SOR), Monte Carlo integration (MC), sparse
Matrix Multiply (MM), and dense LU matrix factorization (LU), each with
different levels of stress on the FPUs.

12http://www.spec.org/
13http://math.nist.gov/scimark2/

15

Integer Floating point

0

20

40
38.8

0

38.9

33.7

E
v
e
n
t
s
[1
0
1
0
]

AMD-Bull

Integer Floating point

0

20

40

0

8.9

42.9 42.9

E
v
e
n
t
s
[1
0
1
0
]

IBM-P7

Figure 6: Performance counters microbenchmark comparing empty FPU cy-
cles on AMD-Bull () and total FPU operations on IBM-P7 () with the
total number of CPU cycles ().

5.2. Workload Profiling

To validate the usage of performance counters as an instrument for work-
load profiling and to verify the accuracy they provide in the identification of
floating point intensive code, we first performed two synthetic experiments
running two workloads: Integer and Floating point.

For the first experiment, a series of 4x4 matrix multiplications (a common
operation used in computer graphics) is executed using only integer or float-
ing point variables. The execution of the workloads is monitored through
the counters previously described. Results are reported in Figure 6.

On AMD-Bull, the CYCLES FPU EMPTY counter is effectively helping
in determining the number of FPU-related operations. The Integer config-
uration, as expected, is confirmed as not consuming FPU operations (that
is, the FPU pipeline is empty for almost all the CPU cycles consumed by
the application). By using the Floating point configuration, where only
floating point operations are executed, we observe how the number of CY-
CLES FPU EMPTY events is close to zero. As expected, the FPU pipeline
is constantly filled with new operations, since the code contains mainly FPU-
related ones.

On IBM-P7, the PM FLOP counter reports a number close to 0 for the
Integer test as expected, since no floating point operations are involved. The
Floating point test shows that several millions of floating point operations
have been executed during the experiment.

If we compare the bars between AMD-Bull and IBM-P7 it may sur-
prise how clearer are the results obtained on AMD-Bull than IBM-P7. In

16

fact, while on AMD-Bull we are comparing two counters measuring cycles,
on IBM-P7 we compare cycles against (floating point) instructions. Since an
instruction can take several cycles to complete, the gap between the coun-
ters is higher on IBM-P7. In addition, the PM FLOP counter is “direct”,
that is, it is keeping track of the total number of floating point operations,
while the CYCLES FPU EMPTY counter tells us “indirectly” how much
stress on the FPUs a thread is generating by giving an insight on how of-
ten the FPU pipeline is idle (empty). For this reason, and for the sake
of clarity, it is important to remember that on AMD-Bull a higher num-
ber of CYCLES FPU EMPTY events means low consumption of FPU op-
erations, while on IBM-P7 is the contrary: a higher count of PM FLOP
events means intensive FPU usage. Finally, since performance counters are
hardware-specific, they should not be used for inter-architectural compar-
isons. In our case, performance counters are used on each target architecture
to locally profile the workload and to provide some values that we can use
to identify a specific behavior, but these values make sense only within each
machine and cannot be merged with results obtained on a different one.

Nevertheless, the most important information provided by this experi-
ment is the ratio between the counters used to measure the presence (or
absence) or FPU operations and the total number of cycles, which provides
a value that we can use to measure the impact that threads have on FPUs
and use this information as input to improve scheduling via WorkOver.

To confirm these results, we applied the same methodology to profile the
FPU workload generated by Spec.CPU and SciMark2.0 benchmarks. Results
for AMD-Bull are reported in Figure 7 and Figure 8, while results for IBM-P7
are depicted in Figure 9 and Figure 10. We use these values to determine a
ratio given by Equation 1 on AMD-Bull and by Equation 2 on IBM-P7.

FPUusage = 1− EmptyFpuCycles

TotCpuCycles
(1)

FPUusage =
TotFpuOps

TotCpuCycles
(2)

We use FPU usage to characterize the FPU workload generated by each
thread. Spec.CPU and SciMark2.0 FPU usages are shown in Table 1 (AMD-Bull)
and 2 (IBM-P7).

Since on IBM-P7 we are dividing FPU operations by CPU cycles (as
discussed before), this ratio is significantly lower than the one obtained on

17

perl bzip2 gcc mcf gobmk hmmer h264ref

0

1

2

3

1.56

2.08

1.22
1.43

1.89
2.05

2.67

1.58

2.09

1.33 1.44

1.96
2.12

3.15

E
v
e
n
t
s
[1
0
1
2
]

AMD-Bull Spec.CPU integer

soplex bwaves milc povray gromacs tonto sphinx3

0

2

4

0.25 0.3
0.14 0.26

0.12
0.52

0.75
1.16

3.87

1.47

0.95

1.9
2.17

3.08

E
v
e
n
t
s
[1
0
1
2
]

AMD-Bull Spec.CPU floating point

Figure 7: Empty FPU cycles () and CPU cycles () count for each test of
the Spec.CPU benchmark executed on AMD-Bull.

FFT SOR MC MM LU

0

1

2

0.22
0.02

0.15
0.01 0.05

1.59
1.51

1.13

2.07
1.93

E
v
e
n
t
s
[1
0
1
0
]

AMD-Bull SciMark2.0

Figure 8: Empty FPU cycles () and CPU cycles () count for each test of
the SciMark2.0 benchmark executed on AMD-Bull.

18

perl bzip2 gcc mcf gobmk hmmer h264ref

0

1

2

3

0 0 0 0 0 0 0

2.04
1.9

1.18 1.18

2.01 2.15

2.7

E
v
e
n
t
s
[1
0
1
2
]

IBM-P7 Spec.CPU integer

soplex bwaves milc povray gromacs tonto

0

2

4

0.1
0.5

0.3
0.14

0.76 0.64

1.29

2.91

2.22

1.06

1.82

4.18

E
v
e
n
t
s
[1
0
1
2
]

IBM-P7 Spec.CPU floating point

Figure 9: FP operations () and CPU cycles () count for each test of the
Spec.CPU benchmark executed on IBM-P7.

FFT SOR MC MM LU

0

1

2

0.72

0.38
0.16 0.13

1.1

1.67

2.13

1.87

1.29

1.85

E
v
e
n
t
s
[1
0
1
0
]

IBM-P7 SciMark2.0

Figure 10: Empty FPU cycles () and CPU cycles () count for each test
of the SciMark2.0 benchmark executed on IBM-P7.

19

AMD-Bull FPU usage − Spec.CPU integer
perl bzip2 gcc mcf gobmk hmmer h264ref

0.01 <0.01 0.08 <0.01 0.03 0.03 0.15

L2 cache miss rate

0.12 0.5 0.84 1.62 0.08 0.07 0.07

AMD-Bull FPU usage − Spec.CPU floating point
soplex bwaves milc povray gromacs tonto sphinx3

0.79 0.92 0.91 0.72 0.94 0.76 0.75

L2 cache miss rate

2.14 0.98 1.74 0.01 0.05 0.24 1.63

AMD-Bull FPU usage − SciMark2.0
FFT SOR MC MM LU

0.86 0.99 0.87 0.99 0.97

Table 1: AMD-Bull FPU usage for the Spec.CPU and SciMark2.0 bench-
marks as given by Equation 1. Spec.CPU benchmark characterization is
completed by L2 cache miss rates.

AMD-Bull (where we divide idle cycles by total cycles). However, since these
values are only an internal indicator used to differentiate threads, absolute
values do not matter and they should not be used, e.g., to perform a com-
parison on how efficient is the AMD Bulldozer or IBM POWER7 processor
in doing floating point maths.

Thanks to the FPU usage metric, and by regularly updating the values
reported by performance counters, WorkOver monitors which threads are
performing more FPU-intensive computations and forces the scheduler to
assign them to a core where no other FPU-intensive threads are already
running. This mechanism is at the basis of the controller used by WorkOver,
which is evaluated in the next experiment.

The two tables are completed by an additional index: the L2 cache miss
rate. This rate is defined by the number of L2 cache misses divided by the
number of CPU cycles. We use the frequency of L2 cache misses to have
a raw approximation of the level of contention that each benchmark puts
on the L2 cache. Since each core shares its FPUs and its L2 cache among
the available PUs, later on we use this rate to differentiate the performance
contribution given by improved FPU usage and from better cache locality.

SciMark2.0 benchmarks are very compact in terms of both memory con-
sumption and code length, efficiently fitting within CPU caches. As a conse-

20

IBM-P7 FPU usage − Spec.CPU integer
perl bzip2 gcc mcf gobmk hmmer h264ref

<0.001 <0.001 <0.001 0.002 0.004 <0.001 <0.001

L2 cache miss rate

0.004 0.017 0.030 0.045 0.003 0.004 0.003

IBM-P7 FPU usage − Spec.CPU floating point
soplex bwaves milc povray gromacs tonto sphinx3

0.074 0.18 0.13 0.13 0.42 0.15 -

L2 cache miss rate

0.027 0.014 0.018 <0.001 0.003 0.004 -

IBM-P7 FPU usage − SciMark2.0
FFT SOR MC MM LU

0.43 0.18 0.09 0.11 0.61

Table 2: IBM-P7 FPU usage for the Spec.CPU and SciMark2.0 benchmarks
as given by Equation 2. Spec.CPU benchmark characterization is completed
by L2 cache miss rates.

quence, they generate very few cache misses (several orders of magnitude less
than Spec.CPU). For this reason, we can ignore this aspect when running
SciMark2.0 on our testing hardware.

The Spec.CPU sphinx3 benchmark on IBM-P7 gives a compilation error
and we have not been able to run it on this machine.

5.3. Case Study

In this section, we evaluate the speedup achievable with WorkOver when
the system executes heavy numeric computations. When only a few threads
are active, the OS is likely to schedule them on different cores. However, when
the system utilization increases, threads executing floating point-intensive
workloads may be scheduled on cores that are part of the same core. When
used, WorkOver monitors the FPU usage ratio of all running threads spawn-
ing within user-selected applications. Every second, the most floating point
intensive threads are bound to PUs belonging to different cores, decreas-
ing the contention on shared FPUs and giving room to the OS scheduler to
schedule less FPU-intensive or integer-only threads on the remaining PUs.

On AMD-Bull, using 8 PUs over 4 cores as configured for our testing
environment, this implies that the scheduling of the top 4 FPU-intensive
threads is restricted to the first PU of each core. The following 4 threads are
scheduled on the second PU of each core, while remaining threads have no

21

restrictions. To reduce unnecessary thread migrations, the caching mecha-
nism previously described prevents threads staying within the first or second
group of 4 threads for more than a sampling cycle from being rescheduled on
a different core.

On IBM-P7, we perform experiments using two different SMT levels:
SMT2 and SMT4. When configured in SMT2, IBM-P7 uses 16 PUs and 8
cores, while with SMT4 it uses 32 PUs and 8 cores.

5.4. Multithreaded Spec.CPU on AMD-Bull

In this experiment we measure the wall-time required to run 4 instances of
Spec.CPU integer and 4 instances of Spec.CPU floating point benchmarks on
AMD-Bull. The idea is to automatically let WorkOver analyze and decide
how to schedule their threads to improve the usage of available execution
units. After testing many pairs of benchmarks, we include and discuss here
the results obtained with two pairs (hmmer+povray and mcf+sphinx3) that
are particularly representative of two recurrent behaviours that we observed
(in all cases, including other pairs, we have been able to identify the presence
of one or both of these behaviors with different weights).

We run the experiments using three different configurations: (1) an inten-
tionally suboptimal scheduling () aggregating similar workloads to the PUs
of one same core (that is: integer with integer, floating point with floating
point); (2) the optimized scheduling () putting heterogeneous threads to-
gether (an integer thread with a floating point thread); and (3) by not using
WorkOver at all and letting the default OS scheduler run (). Results are
reported in the left chart of Figure 11.

Since one AMD Bulldozer core shares the FPUs and the L2 cache among
its two PUs, we also report (in the right chart of the same Figure) the number
of L2 cache misses generated during the experiment. This counter gives us
an additional information about which hardware resource (FPU or L2 cache)
is more responsible for the performance gain or degradation.

Results. Each entry is computed as the mean value after ten independent
runs. Results are very stable for the intentionally suboptimal baseline and
WorkOver optimized one (with a standard deviation below 1%). Things are
different concerning the default OS scheduling: since the scheduler cannot
characterize threads as integer- or FPU-intensive, it considers them all the
same and runs them on the available PUs. To improve locality and prevent
performance degradation due to unnecessary migrations, it tends to keep one
thread tied to a specific PU until the overall workload changes. In this way,

22

hmmer + povray mcf + sphinx3

0.9

1

1.1

1.2

1 1

1.14

1.2

1.07

1.15

S
p
e
e
d
u
p

AMD-Bull performance

hmmer + povray mcf + sphinx3

0.8

0.9

1

1 1

0.85

1

0.92

1

D
iff

e
r
e
n
c
e
[%

]

AMD-Bull L2 cache misses

Figure 11: Spec.CPU speedups (top) and cache miss differences (bottom)
on AMD-Bull, using an intentionally inefficient baseline () versus using
WorkOver to improve performance () or letting the default OS scheduler
do the job ().

in some cases the scheduler manages to scatter integer and floating point
threads in an optimal way, while in other cases it assigns them more like our
intentionally suboptimal configuration.

Our optimal and suboptimal configurations somehow emulate the range of
possible performance that the scheduler can (non-deterministically) achieve,
while by using WorkOver the optimal deployment is immediately identified
and maintained (as it could be achievable by manually pinning threads to
the proper PUs a priori).

Results show that WorkOver is from 15% to 20% faster than the subopti-
mal baseline and by 6% to 10% faster (on average) than the default scheduler.
WorkOver also provides stable results among independent runs of the same
benchmark, while the default scheduler is more noisy.

At this point, we have shown that WorkOver is concretely bringing some
advantages to the system, but how can we be sure that this speedup is really
coming from improved execution unit occupancy and not from a better cache
usage? According to our measurements, speedups are supported by both
these events but with a different weight for each pair. The two pairs we
selected are well representative of this dual-contribution: if we compare the
speedup and difference in cache misses of the hmmer+povray pair, we can
easily observe that they are strictly correlated (a +14% speedup is followed
by a similar percent of reduction in the number of L2 cache misses). The
cache miss rate of Table 1 gives us some insight: hmmer has a rather low

23

value (0.07) and povray even less (close to 0). This means that these two
benchmarks are stressing the L2 cache in a significantly different way. Now,
since on each AMD-Bull core the L2 cache is shared by its two PUs, when
we put two hmmer threads on the same core, there is more contention on
the L2 than when a hmmer thread is executed in combination with a less
cache-intensive thread such as povray.

The mcf+sphinx3 case is different. Here the cache miss difference among
the three configurations is below 0.1% but we measure speedups of up to
20%. In fact, these two benchmarks have a similar cache miss rate of 1.62
and 1.63 respectively, thus are putting contention on the L2 cache in a similar
way. In this case, it is difficult to justify the speedup by such a small delta
in the cache miss count. The performance gain is more likely introduced by
a better workload distribution over the available execution units.

5.5. Multithreaded Spec.CPU on IBM-P7

In this experiment we repeat on IBM-P7 the same test previously per-
formed on AMD-Bull in Section 5.4. Since IBM-P7 supports different levels
of SMT, we use two additional configurations: SMT2 (reported in Figure 12a,
using 2 PUs per core) and SMT4 (Figure 12b, activating 4 PUs per core).
This means that for SMT2 (and accordingly to the machine settings described
in Section 5.1) we run 8 instances of Spec.CPU integer and 8 instances of
Spec.CPU floating point benchmarks, while for SMT4 we run 16 and 16.

We report and discuss here the results obtained with two pairs particu-
larly significant and representative of the behaviours already pointed out on
AMD-Bull in the previous section. The two pairs are h264ref+povray and
gobmk+bwaves.

Since each IBM POWER7 processor core also shares its L2 cache among
the available active PUs, we observe the number of L2 cache misses generated
during the experiment to have a better explanation about the performance
difference reasons.

Results. In general, this experiment confirms the results we obtained
and discussed on AMD-Bull. WorkOver improves the worst-case baseline by
19% up to 47% and gives, on average, a boost of 6% to 16% over the default
scheduler (in addition to more stable results). In fact, the performance vari-
ability observed on IBM-P7 by using the default OS scheduler is higher than
the one measured on AMD-Bull. On IBM-P7, the top performance the OS
scheduler can reach (reported as the highest point in the chart error bars) is
lower than the one obtained on AMD-Bull (when both are compared to the

24

h264ref + povray gobmk + bwaves

1

1.2

1.4

1 1

1.47

1.22

1.31

1.14

S
p
e
e
d
u
p

IBM-P7 performance

h264ref + povray gobmk + bwaves

0.6

0.8

1

1 1

0.68

1

0.79

1

D
iff

e
r
e
n
c
e
[%

]

IBM-P7 L2 cache misses

(a) Using SMT2

h264ref + povray gobmk + bwaves

1

1.2

1.4

1 1

1.4

1.19

1.25

1.13

S
p
e
e
d
u
p

IBM-P7 performance

hmmer + povray gobmk + bwaves

0.6

0.8

1

1 1

0.6

0.97

0.82

0.99

D
iff

e
r
e
n
c
e
[%

]

IBM-P7 L2 cache misses

(b) Using SMT4

Figure 12: Spec.CPU speedups (top) and cache miss differences (bottom) on
IBM-P7 with two different SMT configurations (SMT2 and SMT4), using
an intentionally inefficient baseline () versus using WorkOver to improve
performance () or letting the default OS scheduler do the job ().

25

performance obtained using WorkOver). The reason is that we are running
more threads (16 and 32 on IBM-P7, respectively 8 on AMD-Bull) and it
is more difficult for the default OS scheduler to obtain, by chance, a proper
scheduling of the various threads.

According to our measurements, the speedups obtained on IBM-P7 are
also in part due to a different cache usage and improved occupancy of the
execution units. The h264ref+povray pair is a good case showing that the
high difference in performance is followed by a proportional variation in the
number of L2 cache misses. By comparing the speedup obtained by the
WorkOver scheduling over the suboptimal baseline with the cache misses
measured we observe that a speedup of 47% is related to 32% less misses
(using SMT2) and a speedup of 40% to 40% less cache misses (using SMT4).
If we check the cache miss rate in Table 2 for the benchmarks used in this
pair, we discover that povray is the benchmark generating the lowest number
of cache misses on IBM-P7. This fact suggests that threads running on the
same core with threads running povray take more advantage from the shared
L2 cache, since povray is not putting much stress on it (while all the other
benchmarks have higher cache rates).

On the contrary, the gobmk+bwaves pair is a clear example of speedup
that cannot be explained by a better cache exploitation. On SMT2, this pair
shows a speedup of 22% over the suboptimal baseline and of 8% (on average)
over the default OS scheduler, but the number of L2 cache misses measured
in the three cases are identical. The SMT4 case is similar: a speedup of 19%
over the baseline is followed by only 3% less cache misses, while a speedup of
6% over the default OS scheduler shows a variation of 1% in terms of misses.

5.6. Multithreaded SciMark2.0 on AMD-Bull

Thanks to Spec.CPU, we have been able to setup a case study by using
two very distinct benchmarks running for a long period of time without
significant variations. By switching to SciMark2.0, we want to use a more
dynamic scenario where all of its 5 benchmarks are doing FPU-intensive
computations with variable stress on the FPUs. Since SciMark2.0 runs inside
a Java VM, WorkOver also keeps track of corollary threads that are used by
the JVM for doing tasks such as realtime code optimization and garbage
collection (thus providing a more noisy and realistic scenario).

Also, we modified the benchmark harness to start multiple threads con-
currently executing thread-local instances of the benchmarks, in order to
have persistent threads that change the benchmark they are running over

26

Full SciMark2.0 FFT + MM

0.9

1

1.1

1 1

1.08

1.11

S
p
e
e
d
u
p

AMD-Bull SciMark2.0

Figure 13: SciMark2.0 speedups on AMD-Bull using default OS scheduling
() versus using WorkOver to improve performance ().

time (to really take advantage from the dynamic monitoring and adaptation
of WorkOver). To saturate the PUs and cores we configured on AMD-Bull,
we use 8 benchmark threads, that is, a number of threads equal to the num-
ber of available PUs. While the five SciMark2.0 benchmarks are executed
in random order, the harness guarantees that each thread executes them all.
After each thread completes the execution, we measure the cumulative score
of each benchmark. Unlike Spec.CPU, SciMark2.0 benchmarks generate very
few cache misses: for this reason, we do not show a similar chart for this test.

Results. Figure 13 reports the results of our evaluation, normalized to
the baseline (i.e., default OS scheduling without WorkOver). Each data-
point corresponds to the average of 10 measurements. Each measurement is
preceded by a warm-up run to attenuate noise from class-loading and just-
in-time compilation. In all considered cases, the standard deviation is be-
low 2%. When each benchmark thread executes the entire SciMark2.0 suite
(Full SciMark2.0), WorkOver effectively improves runtime performance, in-
crementing the final benchmark score of 8%. Figure 13 reports the results
of the execution of a subset of benchmarks, that is, FFT and MM (FFT +
MM). According to Table 1, the FPU usage made by those workloads is the
most different (99% and 86% respectively). In this case, the use of WorkOver
increases the score of 11% since the system is less saturated than by running
the full suite (with more threads with higher FPU usage) and takes an ad-
ditional boost of 3% from the improved scheduling of threads with different
stress on the FPUs.

27

Full SciMark2.0 LU + MC

0.9

0.95

1

1.05

1.1

1 1

1.05

1.09
S
p
e
e
d
u
p

IBM-P7 SciMark2.0 SMT2

Full SciMark2.0 LU + MC

0.9

1

1.1

1.2

1 1

1.11

1.19

S
p
e
e
d
u
p

IBM-P7 SciMark2.0 SMT4

Figure 14: SciMark2.0 speedups on IBM-P7 with SMT2 and SMT4 using
default OS scheduling () versus using WorkOver to improve performance
().

5.7. Multithreaded SciMark2.0 on IBM-P7

In this experiment we execute on IBM-P7 the test we previously ran on
AMD-Bull by using the same methodology described in Section 5.6 for the
warm-up phase and to compute averages. In addition, as we already did in
Section 5.5, we use two different SMT configurations to evaluate our approach
under SMT2 and SMT4.

Results. Results are reported in Figure 14, normalized to the baseline
defined as the average performance of the default OS scheduling after 10
runs. Standard deviation is below 5% for the baseline and below 2% for the
results obtained using WorkOver. These results basically confirm the validity
of our approach on a more noisy and dynamically changing scenario such as
the one setup with multithreaded SciMark2.0.

On SMT2, we measure speedups of 5% for the full SciMark2.0 and of 9%
for the pair LU + MC, that is, when only threads running the most and less
FPU-intensive SciMark2.0 benchmarks are used (according to Table 2).

On SMT4, WorkOver is able to increase performance by 11% when the
whole benchmark suite is used and up to 19% for the pair LU + MC. Since
IBM-P7 runs on a different architecture and uses a different JVM, the code
executed is very different from the one running on AMD-Bull. For this
reason, the SciMark2.0 benchmark ratios reported in Table 2 show a higher
variability (close to 50%) when compared to the ratios of Table 1 (with all
the 5 benchmarks within a 15% of variability). This difference makes it more
difficult for WorkOver to optimize the scheduling on AMD-Bull, while on
IBM-P7 an improved usage of the available execution units provides a more

28

significant speedup. In this case, too, WorkOver also produces more stable
results over the baseline, by reducing the standard deviation from 5% to 2%.

5.8. Discussion

While on the one hand the approach we adopted in WorkOver has demon-
strated an interesting series of results so far, it also features several limitations
that must be discussed.

In the present work we intentionally avoided NUMA and inter-CPU con-
straints since it was beyond our scope. Nevertheless, NUMA-awareness is
an important factor already largely analyzed in the literature than can bring
higher speedup than the one provided byWorkOver when properly addressed.
From this perspective, a two-level scheduling policy should be applied ad-
dressing first an efficient NUMA-aware distribution of the workload and then,
within each NUMA-node (as we simulated in our experiments), improved ex-
ecution unit occupancy.

WorkOver is also built on the assumption that heterogeneous integer
and floating point workload is delivered to the machine. Many scientific
applications do the same type of computations in all their threads, thus
making our PU-oriented optimizations less effective. However, unless these
threads are making a perfectly constant integer/floating point usage over
time, WorkOver is capable of rescheduling them according to their current
activity (as our experiments highlighted in Section 5.6 and 5.7).

Another factor that is currently not taken into account is data shared
among threads: if two or more threads access the same information, schedul-
ing them to distant cores without shared caches could reduce performance.
This is an open issue that will be addressed by future work: when is it
more worthy to improve for better execution unit occupancy and when for
improved cache locality?

6. Related Work

Hardware performance counters represent a widely used instrument for
performing realtime profiling of different computational workloads. Coun-
ters have been used for memory optimization [16], hardware characteristics
identification [17], application characterization [18], security [19], data-race
detection [20], etc.

The idea of exploiting counters for the development of hardware-aware
scheduling policies has been already discussed in related research: in [21], for

29

instance, hardware performance counters are exploited to drive the schedul-
ing of multiple independent threads (i.e., not belonging to the same appli-
cation) to reduce the power consumption on multicore machines. This and
similar approaches [22, 23, 24] demonstrate how the fine-grained quality of
the low-level counter measurements is of great benefit for performance op-
timization. In [25] the authors use cache-related performance data to en-
force threads sharing a common data structure to share a common last-
level cache. Similarly, in [26] the authors present a NUMA-aware scheduler
based on performance counters. The scheduler monitors memory-related
counters and infers which threads are sharing data on a common NUMA
node. Therefore, the scheduler can easily map threads sharing the same re-
source to the most efficient NUMA node. The approach is specific to the
domain of OpenMP parallel applications, while a generic approach is pre-
sented in [27], where a NUMA-aware scheduler has been introduced. The
authors also show that schedulers not aware of the hardware architecture
(called UMA systems in the paper) could even hurt performance. A similar
non-NUMA approach has been presented in [28]. All these approaches show
how advanced, hardware-aware scheduling policies improve performance in
the case of hardware resource contention. In our work, we also observed
the impact of physical resources contention, showing that execution units
should also be carefully considered for thread scheduling, in addition to the
evergreen cache and NUMA problems. An approach with similar goals is dis-
cussed in [29], where the benefits coming from different scheduling policies
on an Intel-based HyperThreading-enabled multicore CPU are presented.

Klug et al. used hardware performance counters and thread-pinning [30]
to improve performance through automatic detection of the best binding be-
tween threads and cores in a shared memory system. While their approach
focused mainly on shared caches, with WorkOver we aim at improving per-
formance through better execution unit occupancy.

Another relevant approach more specific to the IBM POWER7 architec-
ture is presented in [31], where authors analyze how performance is influenced
by thread placement policies. In particular, their analysis highlights that up
to 54% reduction in execution time can be obtained (11.2% on average) when
running parallel applications under the appropriate thread placement. In [32]
thread placement is also analyzed with regard to energy consumption. Other
related approaches are also discussed in [33, 34].

Finally, a discussion on the accuracy and the benefits of using different
counters in measurement libraries and monitoring applications is presented

30

in [35] and in [36].

7. Conclusion and Future Work

Modern micro-architectures are increasingly complex and heterogeneous
with a growing adoption of SMT- and out-of-order-based solutions to pro-
vide a sustained stream of instructions to keep all the available processor
execution units busy. In this article we present a case study for performance
optimizations targeting shared hardware resources such as the ones found on
the AMD Bulldozer and IBM POWER7 processors. In our experiments we
show that a scheduler not aware of the underlying hardware characteristics
incurs a significant performance penalty with threads featuring an emerging
profile (integer- or floating point-intensive).

To address this limitation, we propose an approach based on monitor-
ing, workload profiling and optimization assembled into WorkOver, a non-
intrusive Linux-based tool running in user-space that allows to automatically
and dynamically identify which threads are FPU-intensive and to schedule
them in a more efficient way. Our measurements using two standard bench-
marks (Spec.CPU and SciMark2.0) show that speedups of about 20% and
more stable performance can be achieved by simply running WorkOver with
the desired applications, without the need of any static analysis, source-code
modification, nor changes to the default OS scheduler.

As future work, we want to evaluate our approach on other processor
architectures (e.g., Intel Sandybridge and multicore ARM processors). We
are also considering integrating the optimizations described in this article
into a more sophisticated, multi-level scheduler, e.g., by using a hierarchy of
rules that are first addressing NUMA and last-level shared cache aspects and
then, within each NUMA node, optimized execution unit occupancy. From
this perspective, one of the challenges will be the identification to the proper
policy weight to give to each level. We also plan to investigate the power
efficiency of our improved scheduling to see whether the speedup measured
in our experiments also provides a more efficient energy consumption.

References

[1] D. Patterson, The trouble with multi-core, IEEE Spectr. 47 (7) (2010)
28–32.

31

[2] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[3] A. Peternier, D. Ansaloni, D. Bonetta, C. Pautasso, W. Binder,
Hardware-aware thread scheduling: the case of asymmetric multicore
processors, in: Proc. of the 18th International Conference on Parallel
and Distributed Systems (ICPADS), Singapore, 2012.

[4] Z. Majo, T. R. Gross, Matching memory access patterns and data place-
ment for numa systems, in: Proc. of the Tenth International Symposium
on Code Generation and Optimization (CGO), ACM, 2012, pp. 230–241.

[5] D. Durand, T. Montaut, L. Kervella, W. Jalby, Impact of memory con-
tention on dynamic scheduling on numa multiprocessors, IEEE Trans.
Parallel Distrib. Syst. 7 (11) (1996) 1201–1214.

[6] Z. Majo, T. R. Gross, A template library to integrate thread scheduling
and locality management for numa multiprocessors, in: Proc. of the 4th
USENIX conference on Hot Topics in Parallelism (HotPar), 2012, pp.
12–12.

[7] N. Min-Allah, H. Hussain, S. U. Khan, A. Y. Zomaya, Power efficient
rate monotonic scheduling for multi-core systems, J. Parallel Distrib.
Comput. 72 (1) (2012) 48–57.

[8] P. J. Nistler, J.-L. Gaudiot, Power efficient scheduling for hard real-
time systems on a multiprocessor platform, in: Proc. of the 2010 IFIP
international conference on Network and Parallel Computing (NPC),
Springer-Verlag, 2010, pp. 106–120.

[9] J.-J. Chen, Multiprocessor energy-efficient scheduling for real-time tasks
with different power characteristics, in: Proc. of the 2005 International
Conference on Parallel Processing (ICPP), IEEE Computer Society,
Washington, DC, USA, 2005, pp. 13–20.

[10] X. Zhao, N. Jamali, Fine-grained per-core frequency scheduling for
power efficient-multicore execution, in: Proc. of the 2011 International
Green Computing Conference and Workshops (IGCC), IEEE Computer
Society, 2011, pp. 1–8.

32

[11] G. Anselmi, B. Blanchard, Y. Cho, C. Hales, M. Quezada, IBM Power
750 and 755 Technical Overview and Introduction REDP-4638-00, In-
ternational Business Machines Corporation, 2010.

[12] J. Abeles, L. Brochard, L. Capps, D. DeSota, J. Edwards, B. Elkin,
J. Lewars, E. Michel, R. Panda, R. Ravindran, J. Robichaux, S. Kan-
dadai, S. Vemuganti, Performance Guide for HPC Applications on IBM
Power 755, IBM Systems and Technology Group, 2010.

[13] J. Du, N. Sehrawat, W. Zwaenepoel, Performance profiling of virtual
machines, in: Proc. of the 7th ACM SIGPLAN/SIGOPS conference on
Virtual Execution Environments (VEE), 2011, pp. 3–14.

[14] A. Peternier, D. Bonetta, W. Binder, C. Pautasso, Overseer: Low-level
hardware monitoring and management for java, in: Proc. of the 9th
international conference on the Principles and Practice of Programming
in Java (PPPJ), Denmark, 2011, pp. 143–146.

[15] M. W. Krentel, Libmonitor: A tool for first-party monitoring, Parallel
Comput. 39 (3) (2013) 114–119.

[16] M. M. Tikir, J. K. Hollingsworth, Using hardware counters to auto-
matically improve memory performance, in: Proc. of the ACM/IEEE
conference on Supercomputing (SC), 2004, p. 46.

[17] J. Demme, S. Sethumadhavan, Rapid identification of architectural bot-
tlenecks via precise event counting, SIGARCH Comput. Archit. News
39 (3) (2011) 353–364.

[18] Y. Luo, K. W. Cameron, Instruction-level characterization of scientific
computing applications using hardware performance counters (wwc), in:
Proc. of the Workload Characterization: Methodology and Case Studies,
1998, pp. 125–131.

[19] C. Malone, M. Zahran, R. Karri, Are hardware performance counters
a cost effective way for integrity checking of programs, in: Proc. of the
6th ACM workshop on Scalable Trusted Computing (STC), 2011, pp.
71–76.

[20] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, T. Austin, Demand-driven
software race detection using hardware performance counters, in: Proc.

33

of the 38th annual International Symposium on Computer Architecture
(ISCA), 2011, pp. 165–176.

[21] K. Singh, M. Bhadauria, S. A. McKee, Real time power estimation and
thread scheduling via performance counters, SIGARCH Comput. Archit.
News 37 (2009) 46–55.

[22] S. Hsin-Ching, S. Bor-Yeh, Y. Wuu, L. Jenq-Kuen, Migrating java
threads with fuzzy control on asymmetric multicore systems for bet-
ter energy delay product, in: Proc. of the International Conference on
Computing and Security (ICCS), 2011, pp. 1–12.

[23] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, E. Ayguade, De-
composable and responsive power models for multicore processors using
performance counters, in: Proc. of the 24th ACM International Confer-
ence on Supercomputing (ICS), 2010, pp. 147–158.

[24] M. Y. Lim, A. Porterfield, R. Fowler, Softpower: fine-grain power es-
timations using performance counters, in: Proc. of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing
(HPDC), 2010, pp. 308–311.

[25] R. West, P. Zaroo, C. A. Waldspurger, X. Zhang, Online cache modeling
for commodity multicore processors, SIGOPS Oper. Syst. Rev. 44 (2010)
19–29.

[26] C. Su, D. Li, D. Nikolopoulos, M. Grove, K. W. Cameron, B. R.
de Supinski, Critical path-based thread placement for numa systems,
in: Proc. of the 2nd international workshop on Performance Modeling,
Benchmarking and Simulation of high performance computing systems
(PMBS), 2011, pp. 19–20.

[27] S. Blagodurov, S. Zhuravlev, M. Dashti, A. Fedorova, A case for numa-
aware contention management on multicore systems, in: Proc. of the
USENIX Annual Technical Conference (USENIXATC), 2011, pp. 1–15.

[28] S. Blagodurov, S. Zhuravlev, A. Fedorova, Contention-aware scheduling
on multicore systems, ACM Trans. Comput. Syst. 28 (2010) 8:1–8:45.

[29] J. Nakajima, V. Pallipadi, Enhancements for hyper-threading technol-
ogy in the operating system: seeking the optimal scheduling, in: Proc.

34

of the 2nd Workshop on Industrial Experiences with Systems Software
(WIESS), 2002, pp. 3–3.

[30] T. Klug, M. Ott, J. Weidendorfer, C. Trinitis, autopin: automated op-
timization of thread-to-core pinning on multicore systems, Transactions
on high-performance embedded architectures and compilers III (2011)
219–235.

[31] S. Manousopoulos, M. Moreto, R. Gioiosa, N. Koziris, F. Cazorla, Char-
acterizing thread placement in the ibm power7 processor, in: Proc. of
the 2012 IEEE International Symposium on Workload Characterization
(IISWC), San Diego, CA, USA, 2012.

[32] L. Brochard, R. Panda, S. Vemuganti, Optimizing performance and en-
ergy of hpc applications on power7, Computer Science - Research and
Development 25 (2010) 135–140.

[33] D. Brelsford, G. Chochia, N. Falk, K. Marthi, R. Sure, N. Bobroff,
L. Fong, S. Seelam, Partitioned parallel job scheduling for extreme scale
computing, in: Job Scheduling Strategies for Parallel Processing, Vol.
7698 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2013, pp. 157–177.

[34] A. Vega, P. Bose, A. Buyuktosunoglu., Power-aware thread placement
in smt/cmp architectures., in: Proc. of the 4th Workshop on Energy
Efficient Design (WEED), Portland, OR, USA, 2012.

[35] D. Zaparanuks, M. Jovic, M. Hauswirth, Accuracy of performance
counter measurements, in: Proc. of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2009, pp. 23–
32.

[36] S. Eranian, What can performance counters do for memory subsystem
analysis?, in: Proc. of the ACM SIGPLAN workshop on Memory Sys-
tems Performance and Correctness (MSPC), 2008, pp. 26–30.

35

