
Node.Scala: Implicit Parallel Programming for
High-Performance Web Services

Daniele Bonetta, Danilo Ansaloni, Achille Peternier, Cesare Pautasso, and
Walter Binder

University of Lugano (USI), Switzerland
Faculty of Informatics

{name.surname}@usi.ch

Abstract. Event-driven programming frameworks such as Node.JS
have recently emerged as a promising option for Web service devel-
opment. Such frameworks feature a simple programming model with
implicit parallelism and asynchronous I/O. The benefits of the event-
based programming model in terms of concurrency management need
to be balanced against its limitations in terms of scalability on multi-
core architectures and against the impossibility of sharing a common
memory space between multiple Node.JS processes. In this paper we
present Node.Scala, an event-based programming framework for the JVM
which overcomes the limitations of current event-driven frameworks.
Node.Scala introduces safe stateful programming for event-based ser-
vices. The programming model of Node.Scala allows threads to safely
share state in a standard event-based programming model. The runtime
system of Node.Scala automatically parallelizes and synchronizes state
access to guarantee correctness. Experiments show that services devel-
oped in Node.Scala yield linear scalability and high throughput when
deployed on multicore machines.

1 Introduction

Services published on the Web need to guarantee high throughput and accept-
able communication latency while facing very intense workloads. To handle high
peaks of concurrent client connections, several engineering and research efforts
have focused on Web server design [2]. Of the proposed solutions, event-driven
servers [3, 12] have proven to be very scalable, as they are able to handle concur-
rent requests with a simple and efficient runtime architecture [9, 7]. Servers of
this class are based on the ability offered by modern operating systems to com-
municate asynchronously (through mechanisms such as Linux’s epoll), and on
the possibility to treat such requests as streams of events. In event-driven servers
each I/O-based task is considered an event. Successive events are enqueued for
sequential processing (in an event queue), and processed in an infinite event-loop.
The event-loop allows the server to process concurrent connections nondetermin-
istically by automatically partitioning the time slots assigned to the processing
of each request, thus augmenting the number of concurrent requests handled by
the server through time-sharing. In this way, request processing is overlapped

with I/O-bound operations, maximizing throughput and guaranteeing fairness
between clients. Thanks to the event-loop model, servers can process thousands
of concurrent requests using a very limited number of processes (usually, one
process per core on multicore machines).

The performance of event-driven architectures has promoted programming
models for Web service development that rely (explicitly or implicitly) on
event-loops. Examples of such programming models include libraries (e.g.,
Python Twisted [6] or Java NIO [1]), and language-level integrations such as
Node.JS [14]. Node.JS is a programming framework for the development of Web
services using the JavaScript language and Google’s V8 JavaScript Engine. In
Node.JS the event-loop is hidden behind a convenient programming abstrac-
tion, which allows the developer to treat event-driven programming as a set
of callback function invocations, taking advantage of the functional nature of
the JavaScript language. Since the event-loop is run by a single thread, while
all I/O-bound operations are carried out by the OS, the developer only writes
the sequential code to be executed for each event within each callback, without
worrying about concurrency issues.

Despite of the high performance of the V8 Engine, frameworks like Node.JS
still present some limitations preventing them from exploiting modern multicore
machines. For example, long running callbacks may block the entire service due
to the single-threaded, sequential event loop architecture. We have overcome
these limitations with the design of Node.Scala, a programming framework for
the development of scalable Web services which takes full advantage of modern
multicores. In more detail, our work makes the following contributions:

– We introduce Node.Scala, an event-loop-based framework targeting the Scala
language and the JVM. Node.Scala features automatic parallelization of
concurrent request processing, automatic synchronization of stateful request
processing, and allows the developer to use both blocking and non-blocking
programming styles. Node.Scala can be used to build HTTP-based services,
including RESTful Web services [4].

– We describe the design of the Node.Scala runtime, which features multiple
event-loops which have been safely parallelized.

– We illustrate the performance of Node.Scala with a set of benchmark results
obtained with both stateless and stateful Web services.

The rest of this paper is structured as follows. In Section 2 we further dis-
cuss the motivations underlying Node.Scala and provide background informa-
tion on event-loop frameworks. Section 3 presents the programming model of
Node.Scala. Section 4 presents the parallel runtime system of Node.Scala. Sec-
tion 5 presents an evaluation of the performance of Node.Scala-based Web ser-
vices. Section 6 discusses related work, while Section 7 concludes.

2 Background and Motivation

Despite of being very scalable in terms of handling concurrent connections, event-
driven frameworks like Node.JS are limited by their runtime system at least in

two aspects, namely (1) the impossibility of sharing a common memory space
among processes, and (2) the difficulty of building high throughput services using
blocking method calls.

Concerning the first limitation, common event-based programming frame-
works are not designed to express thread-level parallelism, thus the only way
of exploiting multiple cores is by replicating the service process. This approach
forces the developer to adopt parallelization strategies based on master-worker
patterns (e.g., WebWorkers1), which however require a share-nothing architec-
ture to preserve the semantics of the event-loop. Whenever multiple processes
need to share state (e.g., to implement a stateful Web service), the data needs
to be stored into a database or in an external repository providing the necessary
concurrency control.

Concerning the second limitation, event-based programming requires the de-
veloper to deeply understand the event-loop runtime architecture and to write
services with non-blocking mechanisms so as to break down long-running oper-
ations into multiple processing steps. Unfortunately, such mechanisms usually
involve the adoption of programming techniques (e.g., nested callbacks, closures)
which increase the complexity of developing even simple services. Moreover, while
non-blocking techniques help increasing the throughput of a service, they also
increase the latency of the responses. As a consequence, services need to be
developed by carefully balancing blocking and non-blocking operations.

As an example, consider Fig. 1. The two code snippets in the figure cor-
respond to two different implementations of a simple Node.JS Web service for
calculating the n-th Fibonacci sequence number. The code in Fig. 1 (a) im-
plements the Fibonacci function using the recursive algorithm by Leonardo da
Pisa, while the one in Fig. 1 (c) implements the same algorithm exploiting non-
blocking programming (using a hybrid synchronous/asynchronous algorithm). If
a request is issued for a Fibonacci number which is greater than a fixed threshold
(over which the standard recursive algorithm is known to block the event-loop
for too long), the result is calculated using the non-blocking algorithm (fiboA).
Otherwise, the blocking recursive algorithm (fiboS) is used. The non-blocking
implementation does not use the stack for the entire recursion. Instead, it gen-
erates a series of nested events (through the nextTick runtime function call),
each one corresponding to a single recursive function invocation. This fragments
the execution flow of each request, as control is returned to the event-loop which
can accept other incoming requests.

A comparison of the performance of the two services is given in Fig. 1 (b). For
each implementation, a mixed workload of “light” (20th Fibonacci number) and
“heavy” (35th Fibonacci number) requests is executed; the workload amounts to
100 requests per second. For the machine used in the experiment, the threshold
has been set to 30. Experiments have been performed with different percentages
of heavy requests (up to 15%). Results show a notable difference between the
two implementations. The blocking implementation achieves only low through-
put compared to the non-blocking one, even with a low percentage of “heavy”

1 http://dev.w3.org/html5/workers/

1 function f i boS (n) {
2 i f (n<2) return n
3 e lse return f i boS (n−1) +f ibo S (n−2)
4 }

5 http . c r e a t e S e r v e r (function (req , r es){
6 var n = req . query
7 re s . end (' r e s u l t : ' + f ib oS (n))
8 }) . l i s t e n (8080)

(a) Blocking Version

Heavy(%) Bk (msg/s) NBk (msg/s)

0.00 100.0 100.0
0.05 24.4 94.2
0.10 9.8 88.9
0.15 5.1 83.6

(b) Performance Comparison

1 function fiboA (n , done) {
2 i f (n<2) done (n)
3 e lse process . nextTick (function () {
4 fiboA (n−1 , function (num1) {
5 process . nextTick (function () {
6 i f (n>threshold)
7 fiboA (n−2 , function (num2){
8 done (num1+num2)
9 })
10 e lse done (num1+f i boS (n−2))
11 })})})
12 }

13 http . c r e a t e S e r v e r (function (req , r es){
14 var n = req . query
15 i f (n>threshold)
16 fiboA (n , function (value) {
17 re s . end (' r e s u l t : ' +value) })
18 e lse re s . end (' r e s u l t : ' + f i boS (n))
19 }) . l i s t e n (8080)

(c) Non-blocking Version

Fig. 1: Blocking (Bk) vs. Non-blocking (NBk) Fibonacci Web Service in Node.JS.

requests. The reason is the sequential event-loop architecture: calling the fiboS

function with values higher than the threshold keeps the event-loop blocked, thus
preventing it from processing other clients’ requests. This aspect, coupled with
the impossibility of sharing a global memory space among different processes,
constitutes a significant limitation for the development of high-throughput Web
services using Node.JS.

3 The Programming Model of Node.Scala

The programming model of Node.Scala is similar to the one of Node.JS, as it
features an implicit parallel programming model based on asynchronous call-
back invocations for the Scala language. However, blocking methods can be in-
voked without blocking the service, and concurrent requests running on different
threads can safely share state. The goal is to let developers write services using
the same assumptions (single-process event-loop) made on the Node.JS platform,
while automatically and safely carrying out the parallelization to fully exploit
multicore machines. This has the effect of freeing the developer from dealing
with the issues identified in the previous section, while keeping all the benefits
of the asynchronous programming model with implicit parallelism, overlapping
I/O- and CPU-bound operations, and lock-free synchronization.

An example of a Node.Scala Web service (Fig. 2) similar to the one com-
puting the n-th Fibonacci sequence number (Section 2) makes use of the two
distinguishing features of Node.Scala, i.e., global stateful objects and blocking
synchronous calls. The stateful object (cache, of type NsHashMap) is used as a
cache to store the values of previously computed requests. To perform the com-
putation, a simple blocking function call (fiboS) is used. The algorithm used is

1 def f i boS (n : I n t) : I n t = n match {
2 case 0 | 1 => n
3 case => f i boS (n−1) + f ibo S (n−2)
4 }
5 val cache = new NsHashMap[Int , I n t] ()
6 val server = new NsHttpServer (8080)
7 server . s t a r t (connect ion => // 1 s t c a l l b a c k
8 {
9 val n = connect ion . req . query (”n”) . as InstanceOf [I n t]
10 i f (cache . conta ins (n))
11 connect ion . re s . end (” r e s u l t : ” + cache . get (n))
12 e lse
13 server . nextTick (=> // 2nd c a l l b a c k
14 {
15 val r e s u l t = f i boS (n)
16 cache . put (n , r e s u l t)
17 connect ion . re s . end (” r e s u l t : ” + r e s u l t)
18 })
19 })

Fig. 2: Simple Stateful Web Service in Node.Scala.

the Scala-equivalent version of the recursive implementation from Fig. 1 (a). The
service makes also use of two callback functions. As in Node.JS, the first callback
represents the main entry point for the service, that is, the callback function that
will be triggered for every new client’s connection. The callback is passed as an
argument to the start() method (implemented in the NsHttpServer class). The
second callback used in the example is the argument to the nextTick method,
which registers the callback to perform the actual calculation and to update the
cache.

Each callback is invoked by the Node.Scala runtime whenever the corre-
sponding data is available. For instance, as a consequence of a client connection,
an HTTP request, or a filesystem access, the runtime system emits an event,
which is put into the event-queue (i.e., into the list of all pending events to be
processed). The event will then be taken from the queue by one of the threads
running the event-loop, which will invoke the corresponding callback function
with the received data passed as an argument. In this way, when a new client
request is received, the runtime calls the first user-defined callback function pass-
ing the connection object as argument. The object (created by the runtime)
can be accessed by all other nested callbacks, and holds all the details of the in-
coming request (connection.req), as well as the runtime object for generating
the answer (connection.res).

The service is stateful because the first callback uses an object with global
scoping, cache, which is not local to a specific client request (to a specific call-
back), but is global and thus shared among all parallel threads running the
event loop. Node.Scala enables services to safely share state through a specific
library of common Scala data structures, which are used by the runtime system
to automatically synchronize multiple concurrent callbacks accessing the same
shared data structure. The details of the runtime mechanisms allowing such safe
implicit parallel processing are described in Section 4.

The second callback calls a synchronous method. In common event-loop
frameworks such a blocking call would result in a temporary interruption
of the event-loop, as discussed in Section 2. The parallel runtime system of
Node.Scala overcomes this limitation using its architecture based on parallel
event-loops. Therefore, blocking synchronous calls do not have a negative im-
pact on Node.Scala service performance as they would have in traditional frame-
works. Consequently, programmers can focus on developing the service business
logic without having to employ complex non-blocking programming techniques
to achieve scalability.

4 System Architecture

In this section we describe the system architecture (Fig. 3), focusing on the con-
structs that allow Node.Scala to safely parallelize request processing. Node.Scala
uses a single JVM process with multiple threads to execute a Web service, grant-
ing shared memory access to the threads running the parallel event-loops. As
illustrated in Fig. 3 (b), the request processing pipeline consists of tree stages:
(1) handling, (2) processing, and (3) completion.

Request handling. Incoming HTTP connections are handled by a dedicated
server thread, which pre-processes the request header and emits an event to the
parallel event-loop to notify a new request. All the operations performed by the
HTTP server thread are implemented using the Java New I/O (NIO) API for
asynchronous I/O data processing. Since each event-loop thread has a dedicated
event-queue, the HTTP server thread adopts the join-the-shortest-queue policy
to select which queue to fill.

Request processing. Multiple event-loop threads concurrently process
events generated by incoming requests. In particular, each event-loop thread
removes an event from its local event queue, accesses the callback table asso-
ciated with that event type, and executes the registered callbacks. New events
generated by the execution of a callback are inserted into the local event queue
of the processing thread. This mechanism ensures that all the events generated
by a specific request are processed sequentially, according to the event-driven
programming model. The callback table is automatically updated each time the
execution flow encounters the declaration of a new callback function (see lines 7
and 13 in Fig. 2).

Request completion. Responses are buffered using the end method. Once
all events generated by a request are processed, the system replies to the client
using the HTTP server thread, which also performs some post-processing tasks
(e.g., generating the correct HTTP response headers and eventually closing the
socket connection).

4.1 Thread Safety

Node.Scala Web services are automatically guaranteed to be thread safe. To
this end, the runtime distinguishes between three types of requests: stateful ex-
clusive, stateful non-exclusive, and stateless. This classification depends on the

Multicore hardware
NUMA or SMP

Java NIO
Request handling

JVM Memory Space

Node.Scala
stateful

components
library

Node.Scala Application

Parallel
event loop

Node.Scala HTTP Server

(a) High-level Architecture

Handling

Pre-processing

Dispatching

Callback
execution

emit(event) emit(event)

HTTP Server Thread Event loop Th. #1

Parallel event loop

Event loop Th. #n

Event #001 Callback

Event #002 Callback
...

Callbacks
Table

1

2

3
Post-processing Callback

execution

...

...

(b) The Parallel Event-loop

Fig. 3: Overview of Node.Scala.

type of accesses to global variables2. If the processing of a request can trigger
the execution of a callback that writes to at least one global variable, the re-
quest is considered stateful exclusive. Similarly, if the processing of a request
can result in at least one read access to a global variable, the request is con-
sidered stateful non-exclusive. All other requests are considered stateless. As a
consequence, a stateful exclusive request cannot be processed in parallel with
other stateful requests. Instead, multiple stateful non-exclusive requests can be
executed in parallel as long as no stateful exclusive requests are being processed.
Finally, stateless requests can be executed in parallel with any other stateless
and stateful request.

To perform this classification, Node.Scala intercepts class loading by means
of the java.lang.Instrument API and performs load-time analysis of the byte-
codes of each callback. Each user-defined callback is parsed by Node.Scala
to track accesses to global variables. To speedup the analysis, methods of
classes from the Node.Scala library are marked with two custom annotations:
@exclusive and @nonexclusive.

Each time the analysis classifies a new callback as stateful exclusive or stateful
non-exclusive, its bytecode is manipulated to inject all read (i.e., ReadLock) and
write (i.e., WriteLock) locks necessary to ensure thread safety3. Lock acquisition
instructions are injected at the beginning of the body of a callback, while lock
release operations are injected at the end. Therefore, the entire body is guarded
by the necessary locks. This mechanism allows the event-loop thread to try to
acquire all necessary locks at once. In case of failure, the event-loop thread can

2 Accesses to final values are not considered for the classification of requests.
3 The semantics of ReadLock and WriteLock are defined in the documentation of the

standard Java class library.

delay the execution of the callback and process events generated by different
requests without breaking the programming model. After a predefined number
of failed attempts, the event-loop thread blocks waiting for all the locks to avoid
starvation. To prevent deadlocks, we associate a unique ID to each lock and we
sort the order of the inserted lock acquisition and release instructions accordingly.

In the worst-case scenario (i.e., all callbacks always require the acquisition
of the same set of exclusive locks) only a single event-loop thread can execute
a single request at any given time. In this case, the performance of the service
is comparable to the one of single-process, event-based frameworks that make
use of sockets to communicate between different processes (e.g., Node.JS). In all
the other cases, Node.Scala can effectively and safely parallelize the execution
of callbacks, taking advantage of all available cores to increase throughput, as
illustrated in the following section.

5 Performance Evaluation

To assess the performance of the Node.Scala runtime, we have implemented a
Web service similar to the one presented in Fig. 2. Instead of the simple Fibonacci
function, we used the entire set of CPU-bound benchmarks of the SciMark 2.04

suite, a well-known collection of scientific computing workloads. The service has
been implemented using only blocking function calls, while both stateless and
stateful services performance have been evaluated.

The machine hosting the service is a Dell PowerEdge M915 with four AMD
Opteron 6282 SE 2.6 GHz CPUs and 128 GB RAM. Each CPU consists of 8
dual-thread modules, for a total of 32 modules and 64 hardware threads. Since
threads on the same module share access to some functional units (e.g., early
pipeline stages and the FPUs), the throughput of Node.Scala is expected to scale
linearly until 32 event-loop threads. The system runs Ubuntu GNU/Linux 11.10
64-bit, kernel 3.0.0-15, and Oracle’s JDK 1.7.0 2 Hotspot Server VM (64-bit).

The runtime performance of Node.Scala is measured using a separate ma-
chine, connected with a dedicated gigabit network connection. We use httperf-
0.9.05 to generate high amounts of HTTP requests and compute statistics about
throughput and latency of responses. For each experiment, we report average
values of five tests with a minimum duration of one minute and a timeout of 5
seconds. Requests not processed within the timeout are dropped by the client
and not considered for the computation of the throughput.

5.1 Stateless Services

To evaluate the performance of the Node.Scala runtime with stateless requests
(i.e., with callbacks neither modifying nor accessing any global state), we have
disabled the caching mechanism in the evaluated service. Therefore, the service
is a pure-functional implementation of the SciMark benchmark suite.

4 http://math.nist.gov/scimark2/
5 http://code.google.com/p/httperf/

1,000 2,000
0

1,000

2,000
T
h
ro

u
g
h
p
u
t
[m

sg
/
s]

1 event-loop thread

598

1,000 2,000

2 event-loop threads

1171

1,000 2,000

4 event-loop threads
2345

650

1,300
L
a
te
n
c
y
[m

s]

4,000 10,000 16,000
0

5,000

10,000

15,000

Request rate [msg/s]

T
h
ro

u
g
h
p
u
t
[m

sg
/
s]

8 event-loop threads

4627

4,000 10,000 16,000

Request rate [msg/s]

16 event-loop threads

8288

4,000 10,000 16,000

Request rate [msg/s]

32 event-loop threads

13649

0

500

1,000

1,500 L
a
te
n
c
y
[m

s]

Fig. 4: Stateless service: throughput () and latency () depending on the
arrival rate and the number of event loop threads. The dashed reference line
() indicates linear scalability.

Fig. 4 illustrates the variation of throughput and latency of responses de-
pending on the request rate and on the number of event-loop threads. The ex-
periment with a single event-loop thread resembles the configuration of common
single-threaded event-driven frameworks for Web services, such as Node.JS. In
this case, the throughput matches the request rate until a value of 600 requests
per second. During this interval, the latency remains below 10ms. Afterwards,
the system saturates because the single event-loop thread cannot process more
requests per unit time. As a consequence, the throughput curve flattens and the
latency rapidly increases to more than one second.

Experiments with larger amounts of event-loop threads follow a similar be-
havior: the latency remains small as long as the system is not saturated, and it
rapidly increases afterwards. The peak throughput measured at the saturation
point scales almost linearly with the number of event-loop threads, up to a value
of 13600 msg/s with 32 threads. This confirms the ability of Node.Scala to take
advantage of all available CPU cores to improve the throughput of stateless Web
services. Our experiments also confirm that the parallel runtime of Node.Scala
allows the developer to use blocking function calls without any performance
degradation.

5.2 Stateful Services

To evaluate the performance of stateful services, we enabled the caching mecha-
nism of the Node.Scala service used for the evaluation, and we have tested it with

10 30 50 70 90
0

2

4

6

Stateful exclusive requests [%]

T
h
ro

u
g
h
p
u
t
[1
0
3
m
sg

/
s] 32 event-loop threads

Fig. 5: Stateful services: throughput of SciMarkSf1 () and SciMarkSf2 ()
depending on the percentage of stateful exclusive requests. The reference line
() refers to the throughput achievable using a single event loop thread.

two different workloads. The first one (called SciMarkSf1) makes an extensive
use of the caching mechanism, forcing the runtime to execute either exclusive or
non-exclusive callbacks. The second one, (called SciMarkSf2) uses the caching
mechanism only to store new data. Therefore, the second workload requires the
runtime to process both exclusive and stateless callbacks.

The goal of both workloads is to assess the performance of the service in the
worse possible cases, i.e., when the service is intensively using a single common
shared object.

Fig. 5 reports the peak throughput of the two considered Web services, exe-
cuted with 32 event-loop threads, depending on the amount of stateful exclusive
requests. We do not report the values for corner cases, that is, 0% and 100%, be-
cause they are equivalent to the peak throughput presented in Fig. 4 for the cases
with 32, respectively 1, event-loop threads. As reference, we plot a line corre-
sponding to the performance with a single event-loop thread. When the number
of stateful exclusive requests is high, performance is comparable to those of tradi-
tional, single-threaded, event-driven programming frameworks. However, when
this number is smaller, Node.Scala can effectively take advantage of available
cores to achieve better throughput.

6 Related Work

Web server architectures can be roughly classified into three categories [12]:
thread-based, event-based, and hybrid [5, 8]. The runtime of Node.Scala lies
in the latter category, as it uses both event-loops and threads. A similar ap-
proach is represented by the SEDA architecture [16]. Both SEDA systems and
the Node.Scala runtime feature multiple event queues and multiple threads. How-
ever, Node.Scala features a programming framework built on top of its runtime
architecture which allows to develop stateful services, while SEDA’s focus is
only at the runtime level and does not handle state. There are several examples
of event-based Web servers [11], as well as thread-based servers [15]. A long-
running debate (e.g., [10, 15]) comparing the merits of the two approaches has

been summarized in [12]. In the same paper, an exhaustive evaluation shows
that event-based servers yield higher throughput (in the order of 18%) com-
pared to thread-based servers under certain circumstances. A previous attempt
to parallelize event-based services has been presented in [17]. The approach pro-
posed to manually annotate callbacks with color-based annotations, and then to
schedule callbacks for parallel execution according to their color. In Node.Scala
no manual intervention from the developer is needed to parallelize the service
since callbacks do not have to be annotated. Akka6 is a JVM framework for
developing scalable Web services using the Actor model. Like Node.Scala, Akka
supports HTTP and REST, as well as Java NIO. Differently, Node.Scala fea-
tures a library to share state among different client requests, while Akka relies
on Software Transactional Memory. Out of the realm of the JVM, event-based
programming is implemented in several frameworks and languages. For instance,
Ruby’s EventMachine7 allows services to be developed using the Reactor event-
loop pattern [13].

7 Conclusion

In this paper we presented Node.Scala, a programming framework and a run-
time system for the development of high-throughput Web services in Scala.
Node.Scala features an event-based programming model with implicit paral-
lelism and safe state management. Node.Scala developers have to deal neither
with abstractions such as parallel processes or threads, nor with synchronization
primitives such as locks and barriers. Instead, the developer can focus on the
service business logic, while the Node.Scala runtime takes care of the parallel pro-
cessing of concurrent requests. Services built with Node.Scala do not suffer from
limitations of single-threaded event-based frameworks like long-running blocking
methods and lack of support for shared memory. Thanks to the parallel event-
loop architecture of Node.Scala, services leverage current shared-memory multi-
core machines with both stateless (i.e., purely functional) services and stateful
ones. Stateless services exhibit controlled latency and linear scalability up to
saturation. In stateful scenarios the parallel runtime system allows Node.Scala
services to exploit a shared memory space and thus obtain better performance
compared to other single-process solutions.

Our ongoing research focuses on extending the Node.Scala library with addi-
tional objects from the Scala standard library. To this end, we are experimenting
with bytecode analysis techniques to automatically annotate Scala types with
the @exclusive/@nonexclusive annotations used by the Node.Scala runtime to
protect callback invocations. Finally, we are also consolidating the Node.Scala
approach by generalizing its runtime system in order to port the Node.Scala par-
allel event-loop system to other JVM-based functional programming languages
such as Groovy, Clojure, and Rhino JavaScript.

6 http://akka.io/
7 http://rubyeventmachine.com/

Acknowledgment

This work is partially funded by the Swiss National Science Foundation with the
SOSOA project (SINERGIA grant nr. CRSI22 127386).

References

1. Bahi, J., Couturier, R., Laiymani, D., Mazouzi, K.: Java and Asynchronous Iter-
ative Applications: Large Scale Experiments. In: Proc. of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 1–7 (2007)

2. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The State of the Art in
Locally Distributed Web-Server Systems. ACM Comput. Surv. 34, 263–311 (2002)

3. Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., Morris, R.: Event-Driven
Programming for Robust Software. In: Proc. of the 10th ACM SIGOPS European
Workshop (EW). pp. 186–189 (2002)

4. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software
Architectures. Ph.D. thesis, UCI, Irvine (2000)

5. Haller, P., Odersky, M.: Actors that Unify Threads and Events. In: Proc. of the
International Conference on Coordination Models and Languages (COORDINA-
TION). pp. 171–190 (2007)

6. Kinder, K.: Event-Driven Programming with Twisted and Python. Linux J. (2005)
7. Li, P., Wohlstadter, E.: Object-Relational Event Middleware for Web Applications.

In: Proc. of the Conference of the Center for Advanced Studies on Collaborative
Research (CASCON). pp. 215–228 (2011)

8. Li, P., Zdancewic, S.: A Language-based Approach to Unifying Events and Threads.
CIS Department University of Pennsylvania April (2006)

9. Li, Z., Levy, D., Chen, S., Zic, J.: Auto-Tune Design and Evaluation on Staged
Event-Driven Architecture. In: Proc. of the 1st Workshop on MOdel Driven De-
velopment for Middleware (MODDM). pp. 1–6 (2006)

10. Ousterhout, J.: Why Threads are a Bad Idea (for Most Purposes). In: USENIX
Winter Technical Conference (1996)

11. Pai, V.S., Druschel, P., Zwaenepoel, W.: Flash: an Efficient and Portable Web
Server. In: Proc. of the USENIX Annual Technical Conference (USENIX). p. 15
(1999)

12. Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A., Cheriton, D.R.: Comparing
the Performance of Web Server Architectures. In: Proc. of the 2nd ACM SIGOPS
European Conference on Computer Systems (EuroSys). pp. 231–243 (2007)

13. Schmidt, D.C., Rohnert, H., Stal, M., Schultz, D.: Pattern-Oriented Software Ar-
chitecture: Patterns for Concurrent and Networked Objects. Wiley, 2nd edn. (2000)

14. Tilkov, S., Vinoski, S.: Node.js: Using JavaScript to Build High-Performance Net-
work Programs. Internet Computing, IEEE 14(6), 80–83 (2010)

15. Von Behren, R., Condit, J., Brewer, E.: Why Events Are a Bad Idea (for High-
Concurrency Servers). In: Proc. of the 9th Conference on Hot Topics in Operating
Systems - Volume 9. p. 4 (2003)

16. Welsh, M., Culler, D., Brewer, E.: SEDA: an Architecture for Well-Conditioned,
Scalable Internet Services. In: Proc. of the ACM Symposium on Operating Systems
Principles (SOSP). pp. 230–243 (2001)

17. Zeldovich, N., Yip, E., Dabek, F., Morris, R.T., Mazires, D., Kaashoek, F.: Mul-
tiprocessor Support for Event-Driven Programs. In: Proc. of the USENIX Annual
Technical Conference (USENIX). pp. 239–252 (2003)

