
Performance Analysis of GPU-based SAR and
Interferometric SAR image processing

Achille Peternier∗, Marco Defilippi†, Paolo Pasquali†, Alessio Cantone†,
Rolf Krause∗, Raffaele Vitulli‡, Fumitaka Ogushi§ and Alberto Meroni§
∗ Institute of Computational Science (ICS), University of Lugano (USI),

Via G. Buffi 13, CH-6904 Lugano, Switzerland
{first.last}@usi.ch

† Sarmap SA, Cascine di Barico, CH-6989 Purasca, Switzerland
{first.last}@sarmap.ch

‡ ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
raffaele.vitulli@esa.int

§ Exelis VIS K.K., Nakayama Bldg. 3F, 1-20-3 Hongo Bunkyo-ku, Tokyo, 113-0033 Japan
{first.last}@exelisvis.com

Abstract—Modern SAR and Interferometric SAR image pro-
cessing make intensive usage of computer hardware resources to
cope with the computational power needed to process complex
images. An increasing interest in this field is being given to new
approaches based on General-Purpose computing on Graphics
Processing Units (GPGPU). In this paper we evaluate the perfor-
mance of three common SAR algorithms: focusing, geocoding,
and persistent scatterers. Each algorithm is implemented using
different CPU- and GPU-based approaches that are used to
evaluate the performance achievable through each technology.
According to our measurements and depending on the kind of
algorithm, speedups of about one order of magnitude can be
obtained with relative low effort.

I. INTRODUCTION

Recent developments in the algorithmic field, an increasing
penetration of SAR imagery and related technologies into new
application domains, and the imminent availability of new
sensors and platforms such as PALSAR-2 and Sentinel-1,
delivering regular world-wide coverage, are shifting the ex-
ploitation paradigm of SAR-data from mapping to monitoring.
While optical sensors typically extend the range of information
that can be extracted through Earth Observation (EO) im-
agery by increasing the number of electromagnetic-spectrum
frequencies that can be acquired at once, SAR sensors are
most effective when acquisitions are repeated over long time
periods [4], [3], [1]. Data gathered in this way allows better
investigating of complex phenomena (that are indistinguish-
able with single-shot acquisitions) and provides additional
information coming from repeated measurements that supports
the description of their temporal evolution. Moreover, the wide
availability of SAR-data opens up to monitoring of very large
areas, from continental to even global scale.

While all this significantly increases the number of domains
that can potentially take advantage of SAR-data, the complex-
ity of the algorithms and the resources needed for processing
very large amounts of information introduce a series of issues
related to the efficient solving of computationally-intensive
problems [2], [6]. The adoption of solutions based on General-

Purpose computing on Graphics Processing Units (GPGPU) to
address the aforementioned issues is very attractive and looks
like the perfect match since these hardware infrastructures
provide:

• Massively-parallel processing capabilities (up to several
thousands of cores) available on single workstations (Per-
sonal Supercomputers);

• Hardware deployments built on top of widely available,
standard products such as various families of GPUs
(ranging from laptops to multiple-GPU servers);

• Programmability through standard languages (like
C/C++) and porting of existing code with relative low
effort;

• High code portability across different hardware platforms.
In this paper we consider different frameworks that enable

the hardware-efficient implementation on multicore CPU- and
GPU-based platforms of representative SAR- and InSAR-
specific algorithms, such as focusing, geocoding, and Persis-
tent Scatterers (PS) analysis. For each algorithm, we evaluate
the improved computational efficiency provided by GPU-
based approaches versus a multicore-optimized, CPU-based
implementation as baseline.

II. TESTING ENVIRONMENT AND METHODOLGY

Experiments have been run on a desktop PC equipped
with an Intel 2.8 GHz i7-930 quadcore CPU with 12 GB of
RAM and a Nvidia Tesla C2050 running at 1.15 GHz with
448 CUDA cores and 3 GB of GDDR5 ECC RAM. During
experiments, GPU ECC memory has been constantly used.

Performance measurements have been conducted on top
of the robust tools and know-how maturated in our related
work [15], [14]. Energy saving, dynamic CPU frequency
scaling, and Turbo mode have been disabled for improved ex-
perimental repeatability. All the measurements reported in this
paper are computed as the average of at least five independent
runs. We observed less than 5% of overall variance between
independent runs.



2−1 21 23 25 27 29 211 213 215 217 219 221 223 225

10−6

10−4

10−2

100

102

Number of samples

Ti
m

e
[s

]
MKL (CPU) OpenCL (GPU) CUDA (GPU)

Fig. 1. FFT scalability test on CPU and GPU using an increasing number of samples (N ) and three different implementations. Logarithmic scale is used
on both axes.

A. Target Frameworks

Several frameworks have emerged over the last years as the
most widely used to leverage the computational power pro-
vided by modern multicores and GPUs. Among the available
solutions, in this paper we focus on these frameworks:

• Thread Building Blocks (TBB). Intel developed TBB1

as a series of C++ template classes designed for taking
advantage of multicore processors. TBB reduces software
development complexity introduced by low-level multi-
threading structures such as threads, locks, etc. With
TBB, developers create “tasks” that are automatically
parallelized by the runtime. Recently, TBB has been
extended to take advantage from the Intel Xeon Phi GPU-
like coprocessor [11].

• Math Kernel Libray (MKL). Intel’s MKL is a highly
optimized library implementing a series of common
scientific and engineering functions, such as Fourrier
transforms, sparse solvers, vector math, etc. It supports
Intel and compatible processors.

• Open Computing Language (OpenCL). OpenCL is a
framework for writing applications that can be executed
across a series of heterogeneous computational devices
including CPUs, GPUs, DSPs, FPGAs, ARM processors,
etc. OpenCL is an open standard maintained and sup-
ported by the no-profit consortium Khronos Group2.

• Compute Unified Device Architecture (CUDA). Nvidia
developed CUDA as a platform integrating a parallel
computing runtime and a programming model running
(solely) on their GPUs. CUDA is available as a set of
APIs, compilers and tools3 that eases the creation of
software using GPUs to speedup its processing.

1http://threadingbuildingblocks.org/
2http://www.khronos.org/opencl/
3https://developer.nvidia.com/cuda-toolkit

III. EVALUATION

In this section we evaluate the CPU and GPU performance
of three common SAR algorithms implemented using the
frameworks previously described.

A. Focusing

Most of the focusing techniques currently used in SAR
imagery intensively use the Fast Fourier Transform (FFT) for
doing signal processing. For this reason, the computational
efficiency of the FFT implementation is a critical factor de-
termining the overall performance of the focusing procedure,
where a faster FFT directly translates into shorter processing
times.

Our first experiment is about evaluating three different FFT
implementations running on CPU and GPU. On CPU, we
use Intel’s highly optimized MKL FFT, while on GPU we
test an OpenCL implementation (released by Apple) and a
CUDA version (cuFFT, released as component of the Nvidia
CUDA SDK). The experiment consists in computing a series
of FFTs using an increasing number of samples (N ). Results
are reported in Fig. 1.

According to our measurements, the two GPU-based im-
plementations overcome the CPU version of the FFT. Inde-
pendently of the programming framework being used, the
massive amount of parallel hardware resources featured by the
GPU provides a clear speedup over the CPU implementation
starting already when a few thousands of samples are used. For
instance, with N = 223, the CUDA implementation is 21 times
and OpenCL 8 times faster than the MKL version. MKL on
CPU is slightly faster than GPU implementations only when
small numbers of samples are used (i.e., for N < 214). The
reason is that GPUs run into overhead due to preparing kernels
for execution and to data-communication costs between host-
and device-memory. For small values of N , the overhead
voids the speedup obtained through the improved parallelism
provided by the GPU.



0 30,000 60,000 90,000 120,000 150,000

0

20

40

60

Number of samples

Sp
ee

du
p

TBB (CPU) OpenCL (CPU) OpenCL (GPU) CUDA (GPU)

Fig. 2. Geocoding scalability test using a growing number of samples and five different implementations (both on CPU and GPU).

0 30,000 60,000 90,000 120,000 150,000

1

1.2

1.4

Number of samples

R
at

io

Fig. 3. OpenCL/CUDA execution time ratio.

B. Geocoding

In this experiment, we evaluate three different geocoding
implementations. On CPU, we used TBB to write a highly
optimized routine taking advantage of the available cores.
The second implementation is written in OpenCL and we run
it using a CPU-only OpenCL context (i.e., using the same
resources used by the first TBB implementation) and a GPU-
accelerated OpenCL context. The third implementation is
written in CUDA. Results in Fig. 2 show the speedup obtained
by the four different configurations with regard to a baseline
obtained running a single-core, sequential implementation.

Our measurements show that GPU-based approaches signif-
icantly improve performance as soon as large data-chunks are
simultaneously processed on the accelerated device, being up
to 70 times faster than the baseline and up to 15 times faster
than the multicore-optimized TBB implementation. It is inter-
esting to mention that the CPU-only OpenCL implementation,
which runs on exactly the same code used for the OpenCL
GPU configuration, still provides a reasonable speedup when
compared to the baseline and to TBB. Although CPU-only
OpenCL is not as optimized as TBB, thanks to OpenCL’s code
portability, this performance comes “for free” when the CPU
is used as a OpenCL device.

Fig. 3 additionally shows that the two GPU-based imple-

mentations have a very similar asymptotic performance. From
this perspective, both OpenCL and CUDA implementations
provide a comparable performance, with OpenCL supporting
cross-device code portability as supplementary feature.

C. Persistent Scatterers

Two PS implementations are evaluated using three different
configurations. We use TBB on CPU and OpenCL on GPU. As
we already did in the previous experiment, we take advantage
of OpenCL code portability to run the same OpenCL kernel
using an additional, CPU-only configuration.

PS is an algorithm for studying how stable natural reflectors
are evolving over time, based on long temporal series of
interferometric SAR images. For this reason, we used three
different image sizes in our performance evaluation: 812
columns by 202 rows, 6664 by 1223, and 11976 by 3202.
Results are depicted in Fig. 4.

According to our measurements, the GPU implementation
is between 3 and 10 times faster than the TBB optimized
CPU implementation. It is interesting to remark that both
the TBB and OpenCL CPU-only implementations perform in
a similar way, while in the previous experiment TBB was
faster. This means that, in some cases, CPU-only OpenCL can
compete in performance with highly-optimized frameworks
whilst keeping cross-device portability.



image 812x202 image 6664x1223 image 11976x3202

0

2

4

6

0.62

3.6

5.17

0.6

3.62

5.1

0.19 0.33 0.51E
xe

cu
tio

n
Ti

m
e

[s
/r

ow
]

TBB (CPU) OpenCL (CPU) OpenCL (GPU)

Fig. 4. Persistent scatterers performance comparison experiment using different image sizes and three different configurations.

When smaller images (e.g., 812x202) are used on the GPU,
the overhead introduced by OpenCL to copy memory buffers
and invoke kernels partially mitigates speedup gains, while
larger images maximize the efficiency of the GPU pipeline.

IV. CONCLUSIONS

New SAR imagery processing approaches based on GPGPU
are gaining increasing interest in the community [13], [8], [12],
[9], [10], [5]. While the hype about GPGPU and potential
speedup has been somehow mitigated [7], GPUs still provide
a significant amount of parallel computational power at reason-
able conditions, both in terms of code-migration complexity
and infrastructure costs. According to our experiments using
common SAR and InSAR imagery algorithms, a significant
speedup is achievable by including GPUs in the processing
pipelines. Depending on workload sizes and algorithms, GPU-
based implementations have been able to increase performance
by up to 21 times with regard to the multicore-optimized
baseline used in our experiments. On the other hand, small
workloads executed on GPU can incur performance degra-
dation due to the overhead required for data-migration and
kernel-execution setup.

ACKNOWLEDGMENT

This work is partially funded by the European Space
Agency (ESA) with the SARSCAPE Image Processor Accel-
erator project.

REFERENCES

[1] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti. A new algorithm
for surface deformation monitoring based on small baseline differential
SAR interferograms. IEEE Transactions on Geoscience and Remote
Sensing, 40(11):2375–2383, 2002.

[2] W. Fan and A. Bifet. Mining big data: current status, and forecast to
the future. SIGKDD Explor. Newsl., 14(2):1–5, 2013.

[3] A. Ferretti, C. Prati, and F. Rocca. Nonlinear subsidence rate estimation
using permanent scatterers in differential SAR interferometry. IEEE
Transactions on Geoscience and Remote Sensing, 38(5):2202–2212,
2000.

[4] F. Holecz, M. Barbieri, A. Cantone, P. Pasquali, and S. Monaco.
Synergetic use of multi-temporal ALOS PALSAR and ENVISAT ASAR
data for topographic/land cover mapping and monitoring at national scale
in Africa. In Proc. of the International Geoscience and Remote Sensing
Symposium (IGARSS), volume 2, pages 5–8, 2009.

[5] X. Jin and S.-B. Ko. GPU-based parallel implementation of SAR
imaging. In Proc. of the International Symposium on Electronic System
Design (ISED), pages 125–129, 2012.

[6] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money. Big data:
Issues and challenges moving forward. In Proc. of the 46th Hawaii
International Conference on System Sciences (HICSS), pages 995–1004,
2013.

[7] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100x GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU. SIGARCH Comput. Archit.
News, 38(3):451–460, 2010.

[8] P. Lindstrom and J. D. Cohen. On-the-fly decompression and rendering
of multiresolution terrain. In Proc. of the SIGGRAPH symposium on
Interactive 3D Graphics and Games (I3D), pages 65–73, New York,
NY, USA, 2010. ACM.

[9] B. Liu, K. Wang, X. Liu, and W. Yu. An efficient SAR processor based
on GPU via CUDA. In Proc. of the 2nd Intenational Congress on Image
and Signal Processing (CISP), pages 1–5, 2009.

[10] Y. Lu, K. Wang, X. Liu, and W. Yu. A GPU based real-time SAR
simulation for complex scenes. In Proc. of the international Radar
conference - Surveillance for a Safer World (RADAR), pages 1–4, 2009.

[11] G. Misra, N. Kurkure, A. Das, M. Valmiki, S. Das, and A. Gupta.
Evaluation of Rodinia codes on Intel Xeon Phi. In Proc. of the 4th
International Conference on Intelligent Systems Modelling Simulation
(ISMS), pages 415–419, 2013.

[12] S. Nilakantan, S. Annangi, N. Gulati, K. Sangaiah, and M. Hempstead.
Evaluation of an accelerator architecture for speckle reducing anisotropic
diffusion. In Proc. of the 14th international conference on Compilers,
architectures and synthesis for embedded systems (CASES), pages 185–
194, New York, NY, USA, 2011. ACM.

[13] J. Park, P. T. P. Tang, M. Smelyanskiy, D. Kim, and T. Benson. Efficient
backprojection-based synthetic aperture radar computation with many-
core processors. In Proc. of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), pages
28:1–28:11, 2012.

[14] A. Peternier, D. Ansaloni, D. Bonetta, C. Pautasso, and W. Binder.
Hardware-aware thread scheduling: the case of asymmetric multicore
processors. In Proc. of the 18th International Conference on Parallel
and Distributed Systems (ICPADS), 2012.

[15] A. Peternier, D. Bonetta, W. Binder, and C. Pautasso. Overseer — Low-
level hardware monitoring and management for Java. In Proc. of the 9th
international conference on the Principles and Practice of Programming
in Java (PPPJ), 2011.


